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ABSTRACT
Bridge Weigh-in-Motion (B-WIM) is the concept of using measured response on a bridge to calculate the static

weights of passing traffic loads as they pass overhead at full highway speed. This paper describes an enhancement to the
Moving Force Identification (MFI) algorithm by estimating the response of some DOFs using limited number of
measurements in order to increase measurements number (Input). The pseudoinverse of the mode shape matrix has been
utilized to approximately calculate the modal response using limited measured response. Then the calculated modal
response has been used to estimate more DOFs that are different from the measured one. The proper orthogonal
decomposition (POD) technique is employed to determine the governing modes that increase the modal response
accuracy. Numerical example for quarter car model passing over simply supported bridge has been established to
demonstrate the idea.
Keywords: Moving Force Identification (MFI); Bridge Weigh in Motion (B-WIM); Truck weight; Inverse
Dynamics; Pseudoinverse; Proper Orthogonal Decomposition

1. Introduction
The American Society of Civil Engineers (ASCE) reported, in the Report Card for America’s Infrastructure, that

almost four in each 10 bridges are 50 years or older. 56,007 — 9.1% — of America’s bridges were structurally
deficient in 2016, and on average there were 188 million trips across a structurally deficient bridge each day[1]. In many
cases, the current loading on these bridges is significantly different from the service loads at the time of design and
construction. To facilitate bridge safety assessment, techniques have been developed to calculate the weights of trucks
using the transportation network. Static weighing at weigh stations is accurate but can only provide data for a small
sample of passing vehicles[2]. Weigh-in-Motion (WIM) is less accurate but can provide weights for all passing trucks.
Bridge Weigh-in-Motion (B-WIM) is one of a number of WIM technologies and accuracies have been reported to be
similar to those from other technologies[3].

B-WIM systems have the potential to provide an inexpensive portable method of rapidly assembling traffic weight
data. The novel technique of using the bridge as an instrument to infer the dynamic wheel forces was first
investigated by[4]. Since then the field of moving force identification (MFI) has progressed rapidly[5-19]. The MFI
problem is an inverse dynamics process and like many, is ill-conditioned which means the solution is very sensitive to
small perturbations in measurements, which requires the regularization approach to overcome this problem. Law and
Fang[7] apply a dynamic programming technique to the MFI problem on a simply supported beam model using
zeroth-order regularization to solve the state space formulation, then González[20] extend the algorithm to allow for the
first order regularization of moving forces, which improved the solution accuracy. Recently the MFI technique has been
used to detect the damage location[21]. The accuracy of the MFI algorithm depends on the measurement numbers, which
increases when using more sensors and decreases when utilizing less number of sensors. Also, the instrumentation cost
and the installation time especially for high elevation bridges are very expensive which limit the use of the B-WIM
technique.
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This paper investigates an estimation technique, which allows the use of small number of sensors to operate the
B-WIM system and increase the system accuracy at the same time. The estimation process is summarized as follows：
 Converting limited measured nodal structural responses to modal ones using the pseudoinverse of the mode shape

matrix.
 Estimate more structural response using mode shape matrix.
 Apply MFI algorithm using the measured and the estimated response.

2. Moving Force Identification (MFI) Algorithm
The MFI algorithm uses inverse dynamics theory to back-calculate a complete time force history for axles or

wheels that move on the bridge. The algorithm adopted in this paper is that used by González et al.[20] who improve the
work of Law et al.[7] by applying the first-order regularization technique.

3. Estimated Response
Based on the pseudoinverse inverse of the mode shape matrix �� , the modal displacement responses (U) can be

approximately calculated from limited measured displacement responses (y), and then the modal displacement
responses can be utilized to back estimate another displacement response at different location as follows:
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Where U and y are the modal and the measured displacement response respectively, p donates the number of

measurements, q is the number of modes and p’ is the number of estimated displacement. The error between the exact
and estimated modal displacement responses can be minimized by choosing the number of sensors exceeding the
number of modes governing the structural responses.

To determine the governing modes of a multi-degrees of freedom (MDOF) system, the proper orthogonal
decomposition (POD) technique is employed[22]. The energy contribution θ of the first q vibration modes can be
calculated based on the POD method as
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Where �� is the ith eigenvalue of the covariance matrix of the acceleration response, which represents the energy
contribution to the response. The required energy contribution of the selected governing modes should exceed 90% of
the total energy of the structural response in order to obtain an accurate estimation for the displacement response[23].

4. Numerical Simulation
The vehicle is modeled as a quarter-car model crossing a 20-m approach distance followed by a 10-m simply

supported finite element (FE) bridge (Figure 1). The quarter-car travels with constant speed 10 m/s. The vehicle masses
are represented by a sprung mass, ms, and un-sprung mass, ma represents the vehicle axle mass and body mass
respectively. The Degrees of Freedoms (DOFs) that correspond to the bouncing of the sprung and the axle masses are,
us, and ua, respectively. The bridge is modeled with 1D Euler–Bernoulli finite beam elements with two degrees of
freedom per node, vertical translation, and rotation. The properties of the quarter-car and the bridge are listed in Table 1
and based upon the work of Cebon[24] and Harris, OBrien and González[25]. The road surface profile is not considered in
this simulation. The dynamic interaction between the vehicle and the bridge is implemented in MATLAB[10,26] based on
the contact force concept adopted by Yang et al[27]. and Gonzalez [28]. Unless otherwise mentioned, the used scanning
frequency is 1000 Hz.

The bridge has been divided into to 10 equal elements and the displacement has been extracted at two different
locations (4.0m, and 5.0m) away from the left support (Figure 2-a). Firstly, the pseudoinverse of the mode shape matrix
has been used to transform the measured displacement to the modal one. Then, the modal displacement response
has been utilized to estimate the remaining displacement at the others locations (3.0, 6.0, 7.0, 8.0)m away from the left
support (Figure 2-b). The figure shows that the pseudoinverse of the mode shape can estimate the bridge response
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(displacement in this example) with high accuracy and enhancing the force estimation process (Figure 3).

Figure 1; Theoretical quarter car model on Simply supported beam.
Vehicle properties Bridge properties

mb 17300 kg Span 10m

ms 700 kg Density 2400 kg/m3

kb 4e5 N/m Width 4.04 m

cb 1e4 N s/m Depth 0.51 m

Ks 1.75e6 N/m Modulus 3.5e10N/m2

Table 1. Bridge properties

(a) (b)

Figure 2(a); Measured displacement at 4.0m and 5.0m away from the left support, (b) comparison between the estimated

displacement (straight line) and the actual displacement (dotted).

(a) (b)

Figure 3(a); Force history using 2-measured displacement, (b) Force history using 2 -measured + 4-estimated displacement.

(a) (b)
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5. Conclusion
In conclusion, the pseudoinverse of the mode shape matrix has the ability to estimate the modal response with high

accuracy using limited number of measurement. The technique reduces the installation and the instrumentation cost and
time of the B-WIM system because it reduced the number of sensors that required to monitor the bridge response. On
the same time, it allows for high accurate and cheap loads monitoring by increasing the measurement number.
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