Combustion Derived SrTiO3: Synthesis, Characterization and Evaluation of Electrochemical Behavior Towards Quantification of Hg(II) Ions

Kusuma Manjunath, Prashanth Shivappa Adarakatti, Pandurangappa Malingappa, Gujjarahalli Thimmanna Chandrappa

Abstract


In this work, we are reporting the synthesis of porous SrTiO3 nanoparticles by using solution combustion route employing strontium nitrate and titanium-peroxo complex as oxidizer. The results of physico-analytical techniques revealed that SrTiO3 have a relatively small particle size, good dispersibility and diminished agglomeration. Powder X-ray diffraction pattern shows cubic perovskite structure (space group Pm3m) and the morphology was observed using a scanning electron microscope. The band gap of 3.24 eV was calculated using the diffuse reflectance spectrum. The surface area (~26.51 m2/g) of SrTiO3 was measured by BET method. SrTiO3 nanoparticles show violet-blue-green photoluminescence emission spectrum at room temperature. The photocatalytic degradation was carried out to investigate the photocatalytic activity of SrTiO3 under UV-light and evaluated for the electrochemical quantification of Hg(II) ions in aqueous solution using differential pulse anodic stripping voltammetry. The results reveal that SrTiO3 nanoparticles show better quantification result for Hg(II) ions.


Full Text:

PDF

References


Gertjan K, Boike LK, Guus JHMR, Dave HAB, Horst R. Appl. Phys. Lett. 73 (1998) 2920-2922. http://aip.scitation.org/doi/abs/10.1063/1.122630

Jeffrey JU, Wan SY, Qian G, Hongkun PJ. J. Am. Chem. Soc. 124 (2002) 1186-1187. http://pubs.acs.org/doi/abs/10.1021/ja017694b

Valeria ML, Maria DG, Sampaio C, Alexandre ZS, Ieda LVR, Carlos OPS, Juan A, Elson L, Jose AV. Phys. Chem. Chem. Phys. 12 (2010) 7566-7579. http://pubs.rsc.org/en/content/articlelanding/2010/cp/b923281h/unauth#!divAbstract

Slonczewski JC, Thomas H. Phys. Rev. B. 1 (1970) 3599-3608. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.1.3599

Shelly B, Jacques EM, Keith B, Michael G, David C. J. Phys. Chem. B. 103 (1999) 9328–9332. http://pubs.acs.org/doi/abs/10.1021/jp9913867

Gerblinger J, Meixner H. Sens. Actuators B Chem. 4 (1991) 99-102. http://www.sciencedirect.com/science/article/pii/092540059180183K

Yue L, Colin N, Deepanshu S, Feridoon A, Li W, Mark R, Kevin Simpson, Robert F, Ian AK. ACS Appl. Mater. Interfaces. 7 (2015) 15898–15908. http://pubs.acs.org/doi/abs/10.1021/acsami.5b03522

Ning W, Deting K, Hongcai H. Powder Technol. 207 (2011) 470-473. https://pubag.nal.usda.gov/catalog/1059347

Wei-Lung T, Shao-Ju S. J. Am. Ceram. Soc. 97 (2014) 1-6. http://onlinelibrary.wiley.com/doi/10.1111/jace.13319/abstract

Kazunari D, Akihiko K, Takaharu O, Nobuhiro K, Haruo K. J. Phys. Chem. 90 (1986) 292-295. http://pubs.acs.org/doi/abs/10.1021/j100274a018

Longo VM, de Figueiredo AT, de Lázaro S, Gurgel MF, Costa MGS, Paiva-Santos CO, Varela JA, Longo E, Mastelaro VR, DE Vicente FS, Hernandes AC, Franco RWA. J. Appl. Phys. 104 (2008) 023515-11. http://aip.scitation.org/doi/10.1063/1.2956741

Florian V, Tanja D, Gunter B, Christos A, Wolfgang MF. J. Nanomater. 63154 (2006) 1-6. https://www.hindawi.com/journals/jnm/2006/063154/abs/

Tang W, Chen D. Int. J. Appl. Ceram. Technol. 4 (2007) 549-553. http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7402.2007.02166.x/full

Haiyan X, ShuQuan W, Hao W, ManKang Z, Rui Y, Hui Y. J. Cryst. Growth. 292 (2006) 159-164. http://www.sciencedirect.com/science/article/pii/S0022024806004465

Uyi S, Shu Y, Tsugio S. J. Nanomater. 629727 (2010) 1-6. https://dl.acm.org/citation.cfm?id=1928864

Luo S, Zhang J, Wang N. High Temp. Mater. Processes (London) 26 (2007) 33-41. https://www.degruyter.com/view/j/htmp.2007.26.1/htmp.2007.26.1.33/htmp.2007.26.1.33.xml

Amala SM, Dhanaraj G, Bhat HL, Patil KC. J. Mater. Sci: Mater. Elec. 3 (1992) 237-239. https://link.springer.com/article/10.1007/BF00703033

Sang JL, Pradheep T, Man JL. J. Ceram. Proces. Res. 9 (2008) 385-388. http://jcpr.kbs-lab.co.kr/file/JCPR_vol.9_2008/JCPR9-4/Vol.9,No.4,pp.385~388_2008.pdf

Fa-tang L, Jingrun R, Mietek J, Shi ZQ. Nanoscale 7 (2015) 17590-17610. http://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr05299h/unauth#!divAbstract

Genki S, Yuki N, Norihito S, Tomohiro A. J. Alloys Compd. 652 (2015) 496-502. http://www.sciencedirect.com/science/article/pii/S0925838815309233

Kusuma M, Chandrappa GT. Current Nanomaterials 1 (2016) 145-155. http://www.ingentaconnect.com/contentone/ben/cnm/2016/00000001/00000002/art00012#Metr

Gowdaiahnapalya PN, Siddaramanna A, Pallellappa C, Gujjarahalli TC. Mater. Lett. 91 (2013) 272–274. http://www.sciencedirect.com/science/article/pii/S0167577X12014085

Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Pure & Appl. Chem., 57 (1985) 603-619. https://www.degruyter.com/view/j/pac.1985.57.issue-4/.../pac198557040603.xml

Boukhennoufa A, Bouhelassa M and Zoulalian A. Journal of Advanced Chemical Engineering. 1 (2011) A110301. https://www.omicsonline.org/open-access/photocatalytic-degradation-of-solophenyl-red-bl-in-an-aqueous-suspension-of-titanium-dioxide-2090-4258-1-110301.pdf

Prashanth S A, Pandurangappa M. Mater. Lett. 185 (2016) 476-479. http://www.sciencedirect.com/science/article/pii/S0167577X16314719


Refbacks

  • There are currently no refbacks.




Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.