Combustion Derived SrTiO3: Synthesis, Characterization and Evaluation of Electrochemical Behavior Towards Quantification of Hg(II) Ions

Kusuma Manjunath, Prashanth Shivappa Adarakatti, Pandurangappa Malingappa, Gujjarahalli Thimmanna Chandrappa


In this work, we are reporting the synthesis of porous SrTiO3 nanoparticles by using solution combustion route employing strontium nitrate and titanium-peroxo complex as oxidizer. The results of physico-analytical techniques revealed that SrTiO3 have a relatively small particle size, good dispersibility and diminished agglomeration. Powder X-ray diffraction pattern shows cubic perovskite structure (space group Pm3m) and the morphology was observed using a scanning electron microscope. The band gap of 3.24 eV was calculated using the diffuse reflectance spectrum. The surface area (~26.51 m2/g) of SrTiO3 was measured by BET method. SrTiO3 nanoparticles show violet-blue-green photoluminescence emission spectrum at room temperature. The photocatalytic degradation was carried out to investigate the photocatalytic activity of SrTiO3 under UV-light and evaluated for the electrochemical quantification of Hg(II) ions in aqueous solution using differential pulse anodic stripping voltammetry. The results reveal that SrTiO3 nanoparticles show better quantification result for Hg(II) ions.

Full Text:



Gertjan K, Boike LK, Guus JHMR, Dave HAB, Horst R. Appl. Phys. Lett. 73 (1998) 2920-2922.

Jeffrey JU, Wan SY, Qian G, Hongkun PJ. J. Am. Chem. Soc. 124 (2002) 1186-1187.

Valeria ML, Maria DG, Sampaio C, Alexandre ZS, Ieda LVR, Carlos OPS, Juan A, Elson L, Jose AV. Phys. Chem. Chem. Phys. 12 (2010) 7566-7579.!divAbstract

Slonczewski JC, Thomas H. Phys. Rev. B. 1 (1970) 3599-3608.

Shelly B, Jacques EM, Keith B, Michael G, David C. J. Phys. Chem. B. 103 (1999) 9328–9332.

Gerblinger J, Meixner H. Sens. Actuators B Chem. 4 (1991) 99-102.

Yue L, Colin N, Deepanshu S, Feridoon A, Li W, Mark R, Kevin Simpson, Robert F, Ian AK. ACS Appl. Mater. Interfaces. 7 (2015) 15898–15908.

Ning W, Deting K, Hongcai H. Powder Technol. 207 (2011) 470-473.

Wei-Lung T, Shao-Ju S. J. Am. Ceram. Soc. 97 (2014) 1-6.

Kazunari D, Akihiko K, Takaharu O, Nobuhiro K, Haruo K. J. Phys. Chem. 90 (1986) 292-295.

Longo VM, de Figueiredo AT, de Lázaro S, Gurgel MF, Costa MGS, Paiva-Santos CO, Varela JA, Longo E, Mastelaro VR, DE Vicente FS, Hernandes AC, Franco RWA. J. Appl. Phys. 104 (2008) 023515-11.

Florian V, Tanja D, Gunter B, Christos A, Wolfgang MF. J. Nanomater. 63154 (2006) 1-6.

Tang W, Chen D. Int. J. Appl. Ceram. Technol. 4 (2007) 549-553.

Haiyan X, ShuQuan W, Hao W, ManKang Z, Rui Y, Hui Y. J. Cryst. Growth. 292 (2006) 159-164.

Uyi S, Shu Y, Tsugio S. J. Nanomater. 629727 (2010) 1-6.

Luo S, Zhang J, Wang N. High Temp. Mater. Processes (London) 26 (2007) 33-41.

Amala SM, Dhanaraj G, Bhat HL, Patil KC. J. Mater. Sci: Mater. Elec. 3 (1992) 237-239.

Sang JL, Pradheep T, Man JL. J. Ceram. Proces. Res. 9 (2008) 385-388.,No.4,pp.385~388_2008.pdf

Fa-tang L, Jingrun R, Mietek J, Shi ZQ. Nanoscale 7 (2015) 17590-17610.!divAbstract

Genki S, Yuki N, Norihito S, Tomohiro A. J. Alloys Compd. 652 (2015) 496-502.

Kusuma M, Chandrappa GT. Current Nanomaterials 1 (2016) 145-155.

Gowdaiahnapalya PN, Siddaramanna A, Pallellappa C, Gujjarahalli TC. Mater. Lett. 91 (2013) 272–274.

Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Pure & Appl. Chem., 57 (1985) 603-619.

Boukhennoufa A, Bouhelassa M and Zoulalian A. Journal of Advanced Chemical Engineering. 1 (2011) A110301.

Prashanth S A, Pandurangappa M. Mater. Lett. 185 (2016) 476-479.


  • There are currently no refbacks.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.