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ABSTRACT
Modulation transfer function (MTF) is a well known and widely accepted method for
evaluating the spatial resolution of a digital radiographic imaging system. In the present study
our aim was to evaluate the MTF obtained from CBCT and micro-CT images. A cylinder
shaped phantom designed for slanted-edge method was scanned by a CBCT device at a 100
µm isometric voxel size and by a micro-CT device at a 20 µm isometric voxel size,
simultaneously. The MTF curves were calculated and the mean spatial resolutions at 10%
MTF were 3.33 + 0.29 lp/mm in the case of CBCT images and 13.35 + 2.47 lp/mm in the case
of micro-CT images. The values showed a strong positive correlation regarding the CBCT
and the micro-CT spatial resolution values, respectively. Our results suggests that CBCT
imaging devices with a voxel size of 100 µm or below might aid the validation of fine
anatomical structures and allowing the opportunity for reliable micromorphometric
examinations.
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1. Introduction
Numerous publications have been investigated the use of cone beam computed tomography
(CBCT) for evaluating small anatomical structures in dentistry e.g. root canal morphology in
endodontics [1-10] or bone quality assessment in maxillofacial surgery [11-20]. It is essential
to visualize these details to set up the proper diagnosis and treatment plan, hence clinicians
need to select the adequate imaging technique with the appropriate resolution. Among the
currently available "high resolution" CBCT equipments the voxel size are 100 µm or even
smaller [21], which are comparable with the size of a root canal’s apical constriction [22-24]
or bone trabeculae [25, 26]. Due to the main advantages of CBCT, namely the higher spatial
resolution and lower patient dose compared to medical computed tomography CBCT
modality has an increasing interest in the dental practice [27], nevertheless inaccurate image
quality can lead to misdiagnosis and unnecessary radiation dose for the patient. Thus it is
worthwhile to assess the image quality of the CBCT device and other radiographic imaging
system quantitatively to ensure the diagnostic accuracy of the chosen modality [28].
Spatial resolution, which is related to the ability of distinguishing two adjacent structures on a
radiograph, is one of the parameters, which can be measured objectively allowing us to
estimate the imaging performance of an X-ray based medical system [29, 30]. There are two
main methods for determining the spatial resolution, namely visual resolution assessment test
and MTF determination. In general both methods are evaluated in line-pairs per millimeter
(lp/mm). MTF is a well known and widely accepted method for evaluating the spatial
resolution of a digital radiographic imaging system [31, 32]. To calculate the MTF of a
computed tomography device thin wire, narrow slit or slanted edge phantom - among others -



can be used, where the MTF is computed quantitatively from the point spread function (PSF)
or from the line-spread function (LSF) by using Fourier transform [29, 33-35]. In general the
limiting spatial resolution is determined at the spatial frequency level, where the MTF is
decreased to 10 % of its maximum value. Brüllmann et al. [29] found in their review, that
there is a large variance between the values of observer based visual assessment and the
quantitative MTF determination. In addition, numerous studies focusing on MTF
measurements as a possible way for quantitatively evaluate the X-ray based imaging devices
using cone-beam geometry [28, 30, 33, 35-37]. The image quality and consequently spatial
resolution is influenced by several other factors such as focal spot size, overall geometry, tube
voltage, tube current, exposure time, rotation arc, the size of field of view (FOV) and the
reconstruction parameters as well as the image noise and the movement of the object [7, 29,
37-39]. Rueckel et al. [30] found in their micro-CT study a significant correlation between the
focal spot enlargement, which is strongly influenced by the tube power, and the range of
magnification: in the case of magnification higher than 30 the gain of spatial resolution is
mainly limited by the focus size and less dominant. In a CBCT study Lee et al. [37]
concluded that the spatial resolution can be improved by changing the voxel sizes and the
reconstruction filters, however the image noise will be increased for smaller voxel sizes. It is
important to emphasize that the voxel size given by the manufacturer is a technical parameter,
which is not equal to the spatial resolution of the imaging system [29, 40].
In the present study our aim was to evaluate the MTF curves obtained from CBCT and micro-
CT images by using a slanted edge phantom and to determine the spatial resolution of the
selected devices.

2. Materials and methods

A cylinder shaped plastic phantom (MicroCT Image Quality Phantom with Slanted Edge,
Mediso Ltd., Budapest, Hungary) developed for micro-CT measurements was used for
determining the MTF values. The phantom consisting of two air-filled chambers and a slanted
edge area was placed into Mediso nanoScan CT (Mediso Ltd., Budapest, Hungary) micro-CT
scanner and fixed with dental wax to the object holder, on which the longer edge was
perpendicular to the rotation axis of the device. The acquisition parameters were as follows:
20 µm isometric voxel size, 70 kV, 720 projections, 300 µA 300 ms exposure time, binning:
1-1, zoom factor: 3.75X, 1936 X 1936 pixels. For the CBCT measurements the phantom was
placed into a water-filled plastic cylindrical vessel , since the FOV is larger, than the size of
the phantom. The slanted edge area of the phantom was aligned with its longer axis
perpendicular to the ground level (Figure 1). To avoid motion artefacts during the scan the
phantom was fixed with dental wax to the vessel and the latter was glued to a metal stage,
which was stabilized on the ground.



Figure 1. Installation of the phantom with slanted edge before CBCT scan. Black arrows
pointing at air filled chambers, white arrow pointing at slanted edge area

The phantom was scanned by Planmeca ProMax 3D CBCT (Planmeca Oy, Helsinki, Finland)
at a 100 µm isometric voxel size (90 kV, 14 mA, 12s, 501 X 501 pixels). Thereafter, CBCT
and micro-CT datasets were reconstructed by using Feldkamp-Davis-Kress algorithm and
exported to DICOM files, then imported into Mediso Image Quality Center software (Mediso
Ltd., Budapest, Hungary). Slanted-edge method was used to evaluate the MTF of both devices.
From the CBCT and micro-CT reconstructed images three adjacent slices were selected,
respectively in which the transparent rectangular shaped area of the phantom was visible. Two
different regions of interests were selected at every slice along one of the longer edge of the
rectangle (Figure 2) and MTF curves were calculated and spatial frequencies were determined
at 10 % MTF by the software. Statistical analysis was performed by using SPSS sofware (ver.
23.0.0.0.; SPSS, Inc., Chicago, IL, USA). Pearson correlation was performed to determine the
correlation coefficients (r) for the spatial resolution values of both modalities.

Figure 2.MTF evaluation in Mediso Image Quality Center software

3. Results
The value of spatial frequency was determined at 10 % MTF value for each sample as the
limiting spatial resolution of the devices for the selected acquisition parameters. The spatial



frequencies showed a strong positive correlation in the case of the selected adjacent slices of
CBCT and micro-CT images, since the Pearson correlation constant was r = 0.922 and r =
1.000, respectively. Thereafter, the spatial frequency values at 10 % MTF were averaged. The
mean spatial resolution of the selected slices of the micro-CT data was 13.35 + 2.47 lp/mm
(38.71 + 8.24 µm) In case of the CBCT data the spatial resolution was at 10% MTF 3.33 +
0.29 lp/mm (150.95 + 11.9 µm).

4. Discussion
There is an increasing interest in utilizing the CBCT as a modality in addition to medical
applications for imaging fine anatomical structures or even for morphological examinations.
Many manufacturers providing the opportunity to adjust the voxel size below 100 µm [21],
which allows to assess the reliability of CBCT scanners for depicting submillimeter human
anatomical structures.
Micro-CT imaging was already proved to be reliable method [41, 42] for bone
micromorphological measurements compared to histomorphometric evaluations, thus
numerous researchers apply and cite micro-CT as a high spatial resolution and non-
destructive gold standard method [11, 13, 17, 19]. Our measured mean 10 % MTF value was
13.35 lp/mm with 20 µm adjusted voxel size, where a 3.7 Mp detector was used, which is
coherent with other findings in the literature: Rong et al. [43] measured 28.2 lp/mm with 12.3
µm voxel size by using a 3,14 Mp detector, while Langner et al. [44] measured at 10 % MTF
22 lp/mm with 15 µm and 6.5 lp/mm with 40 µm sampling, where a 1 Mp detector was
applied. Nakaya et al. [35] achieved a 42.4 lp/mm spatial resolution at 10% MTF with 5.87
µm voxel size, however, a 10.5 Mp camera was used in their study. These results suggest, that
the adjusted size of the voxel is inversely proportional to the spatial resolution, regarding the
10 % MTF value and, on the other hand, the latter is directly proportional to the size of the
detector.
Consequently several comparative studies assessing the image performance of the CBCT
devices with micro-CT as a possible tool of validation [11, 13, 15-20, 45]. Considering our
results, the measured 38.71 µm mean spatial resolution of the micro-CT images provides
micromorphologically reliable images, since the spatial resolution is smaller, than the scanned
human anatomical structure such as human cancellous bone, in which the trabeculae have a
dimension of 50 - 300 µm [16, 46]. Liang et al. [13] assessed two human condylar region of
the mandible scanned by CBCT and micro-CT devices, simultaneously. They determined the
mutual information values after registering the images and concluded that the assessments of
mandibular trabecular structures by using CBCT scanner are comparable with the results of
the assessments, where micro-CT was used for image acquisition. These statements are
supported by Ibrahim et al. [16], who compared trabecular thickness (Tb.Th), trabecular
separation (Tb.Sp) and trabecular number (Tb.N) micromorphometric parameters, of which
only Tb.N was underestimated in the CBCT image sequences in contrast to Tb.Th and Tb.Sp,
which were found to be greater comparing with the micro-CT datasets. Additionally, Parsa et
al. [17] measured the percent bone volume (bone volume (BV)/tissue volume (TV)) on
datasets obtained by micro-CT and CBCT devices and the values of the latter proved to be
greater. These findings are in accordance with the findings of Kim et al. [19], who found
BV/TV values to be greater on CBCT dataset, among others such parameters as BV, Tb.Th
and Tb.Sp, compared to the measurements obtained from micro-CT. Van Dessel et al. [11]
concluded in their comparative evaluation of seven CBCT and one micro-CT devices, that
CBCT devices with voxel size of 100 µm or below might be reliable for morphometric
measurements regarding the structural pattern of the alveolar bone. If a same-sized object is
scanned by a CBCT device and a micro-CT device, it is expected to be depicted in an
extended volume on the CBCT images compared to the micro-CT images most probably due



to the partial volume effect, as a possible explanation. Or even if the reconstructed image
volume is larger than the real size of the scanned object, the pattern of the depicted bone area
is proved to be comparable with the datasets obtained by a micro-CT device [11, 16, 17, 19].
Another possible clinical application of the CBCT modality is the three-dimensional
visualization of the dental root canal. Yilmaz et al. [8] concluded that CBCT image sequences
with less than 300 µm voxel size can be used for determining the working length during an
endodontic treatment of a human mandibular premolar tooth. Nonetheless Acar et al. [3]
found no correlation by comparing the CBCT and micro-CT image sequences of 41 human
primary first and second molars regarding the detectability of an accessory canal and stated
that CBCT is not reliable for depicting the internal anatomy of a root canal system. These
findings are in line with our previous study [10], where the accuracy of three different CBCT
devices was compared with micro-CT by assessing 25 root canals of three monkeys' skull.
According to our results it was stated that the full length of a root canal can be detected only
on CBCT images, if the selected voxel size is adjusted to or below 100 µm, however, the real
contour of the root canal cannot be determined. These findings suggest, that there might be a
correlation between the accuracy of the CBCT and micro-CT modalities. The apical ending of
a root canal, where the diameter of the physiological foramen of a human molar tooth varies
between 79 -720 µm [24]. At this level CBCT images are not capable to give anatomically
faithful information due to the fact, that the physiological foramen can be smaller than the
adjustable smallest pixel size, though the partial volume effect might aid the visualization of
the root canal's path only, but not the exact shape or the contour of the root canal [10].
Our present study verifies that micro-CT image sequences provide accurate information in the
range of the human tissues (e.g. cancellous bone, root canal). However, the measured values
of spatial resolution for both modalities are comparable with the average trabecular thickness
size of the human trabeculae or the diameter of the apical ending of a root canal [22-24],
which suggests that CBCT as well as micro-CT might aid the valid visualization of these
structures either in vivo or ex vivo studies, respectively.

5. Conclusion
Our findings suggests that CBCT imaging devices with an adjustable voxel size of 100 µm or
below might aid the validation of fine anatomical structures and provide the opportunity for
reliable micromorphometric examinations.
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