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ABSTRACT 
The present article reports the applications of Caputo-Fabrizio time-fractional derivatives. This article generalizes 

the idea of unsteady MHD free convective flow in a Walters.-B fluid with heat and mass transfer study over an exponential 
isothermal vertical plate embedded in a porous medium. The governing equations are converted into dimensionless form 
and extended to fractional model. The generalized Walters-B fluid model has been solved analytically using the Laplace 
transform technique. From the general solutions we reduce limiting solutions when to the similar motion for Newtonian 
fluid. The corresponding expressions for and Nusselt and Sherwood numbers are also assessed. Numerical results for 
velocity, temperature and concentration are demonstrated graphically for various factors of interest and discussed. As a 
result, we have plotted the influence of fractional parameter on fluid flow and drawn comparison between fractional 
Walters’-B and fractional Newtonian fluid and found that fractional Newtonian fluid is faster than fractional Walters’-B 
fluids. 
Keywords: free convection; mass and heat transfer; chemical reaction; Caputo-Fabrizio time derivative; radiation; MHD 

1. Introduction
For a long period the fractional calculus, that has derivatives and

integrals of non-natural decree, was originated as a purely theoretic 
domain[1,2]. Recently, it’s been depicted that it could be used to 
explicate certain tangible problems, and likewise for procedures where 
memory upshots are crucial[3]. In this way, although the classical 
derivative establishes the instantaneous modification of a function, the 
parameter of the fractional derivative can be inferred as a memory 
indicator of the fluctuation of the function, allowing the former instants. 
Referable to this understanding, in last years, fractional calculus bears 
productively implemented to dissimilar areas[4,5]. It’s also concerning 
to observe a few modern works in order to find appropriate fractional 
analogues of the so-called particular functions[6–8]. There are several 
definitions—Riemann, Liouville, Caputo, Grunwald-Letnikov, 
Marchaud, Weyl, Riesz, Feller, and others- for fractional derivatives 
and integrals, (see e.g., [1,2,9,10] and references therein). These 
diverseness of definitions flows from the fact that fractional operators 
acquire a different kernel representations in different function spaces. 
In a recent work Caputo and Fabrizio[11] preceded a new fractional 
derivative, analysis, e.g., in Losada and Nieto’s study[12].  
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Magnetohydrodynamic (MHD) flows of acquitting fluids stimulated because of buoyancy effects 
originating from density fluctuations in the gravitational domain are found in several natural phenomena and 
technological arrangements. If fluent is incompressible then the density fluctuation owed to vary in pressure 
is minimal. All the same, the density variation referable to inhomogeneous inflaming and l chemical reaction 
can’t be ignored as this is responsible for innate convection. Probe of interaction of international enforced 
magnetic flux to the natural convection boundary layer streams of an electrically acquitting liquid is significant 
as a drag force stimulated due to enforced magnetic field named Lorentz force and this force is moderating the 
fluid flow rate. Such fluent flows might incur diligences in numerous industries and technical organizations 
like metrology, chemical manufactures, electrical power propagation, solar energy generation, atomic directing, 
boundary layer assure in polymer treating and aerodynamics etcetera. Due to diverse applications of MHD 
boundary layer flows of conducting fluids a lot of investigators have enquired the tempt of magnetic field on 
hydromagnetic currents[13–23]. If a partly ionized fluent with low density (plasma) is interacted with a substantial 
magnetic field the phenomena of Hall and ion-slip effects inherit the characterization and for specified fluids 
the inducted electric current (Hall and ion-slip currents) is admitted in generalized Ohm’s law for a proceeding 
conductor[24]. 

In all of these research probes fluid is counted to be Newtonian. However, the dynamics of non-
Newtonian fluid is considered significantly as it has general applications in plastic fabricating procedure, 
execution of paints and lubricators, food preserving and in geophysical and biological fluids. Viscoelastic fluid 
is one of the sub-categories of non-Newtonian fluid. Beard and Walters[25] have portrayed a classical research 
paper on the two-dimensional stagnation point flow of the elastico-viscous fluid. The model demonstrated in 
this paper is titled as Walters’-B fluid model and this model opened the new scope for the technologists and 
engineers to analyze the dynamics of viscoelastic fluids. Propelled from the diverse progressive and 
engineering applications, latterly many extensive research probes have been demonstrated by the 
researchers[26–35] to canvas the dynamics of viscoelastic fluid by applying respective computational and 
analytical techniques. Influence of magnetic field on elastic viscous fluid is studied significantly due to its 
various applications in many fields of scientific discipline and applied science, in particular, in geophysical 
science, fluid engineering, and petroleum and chemical engineering. Hayat et al.[30] portrayed an analytical 
bailiwick on hydromagnetic oscillating flow of a rotating second grade fluid bounded by poriferous plate using 
Laplace transform method. Siddheshwar and Mahabaleshwar[31] canvassed MHD flow of a viscoelastic liquid 
and heat transfer over a stretching sheet with radiation and heat source. Ghasemi et al.[32] discussed heat carry-
over features of viscoelastic MHD flow of Walters’-B fluid over a non-isothermal unfolding sheet. Prakash et 
al.[33] examined heat transfer features of MHD flow of soiled viscoelastic fluid through poriferous medium by 
reckoning variable viscosity. 

The present article studies the applications of Caputo-Fabrizio time-fractional derivatives. This article 
also generalizes the theme of unsteady MHD free convective flow in a Walters.-B fluid with heat transfer 
analysis across an exponential isothermal vertical plate embedded in a poriferous medium. The classical model 
for Walters’-B fluid is expressed in dimensionless form with the help of non-dimensional variables. Moreover, 
the dimensionless model is converted into a fractional model named as a generalized Walters.-B fluid model. 
The governing equations of generalized Walters’-B fluid model have been worked out analytically by applying 
the Laplace transform method. They satisfy all levied initial and boundary conditions and for 훤 → 0 can be 
reduce to the similar results for Newtonian fluids. The corresponding expressions for skin friction and Nusselt 
number are also assessed. Numerical results for velocity and temperature are displayed graphically for several 
parameters of interest and talked about. This study is of cardinal importance and frequently originates in many 
practical situations such as chemical engineering and polymer extrusion procedures. 
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2. Statement of the problem
Consider the unsteady free convective flow of an electrically conducting, incompressible non-Newtonian

Walters’-B fluid over an upright rigid plate at y = 0, driven by buoyancy force due to concentration and 
temperature differences, occurring upward beside the plate. The x-axis is taken parallel to the plate in upward 
direction and y-axis is normal to plane of the plate. The flow is subject to a uniform magnetic field of strength 
퐵� applied normal to the plate. It is assumed that the magnetic Reynolds number is very small and the induced 
magnetic field is neglected. Furthermore, the electric field due to polarization of charges is negligible as there 
is no electric field. Initially for 푡 ≤ 0, both the fluid and plate are at rest and at uniform temperature 푇∞ and 
concentration 퐶∞ After time t > 0, the plate starts to accelerate in its own plane with exponential acceleration 

and the concentration and temperature level are lowered or raised to 푇∞ + ��
�

�
(푇� − 푇∞)푡  and 퐶∞ +

��
�

�
(퐶� − 퐶∞). Also set of governing equation is given under the usual Boussineq’s approximation as 

휕푢(푦, 푡)
휕푡

= 휈
휕�푢(푦, 푡)

휕푦� −
푘�

휌
휕�푢(푦, 푡)

휕푡휕푦� −
휎퐵�

�

휌
푢(푦, 푡) + 푔훽�(푇(푦, 푡) − 푇∞) + 푔훽�(퐶(푦, 푡) − 퐶∞) (1)

휌푐�
휕푇(푦, 푡)

휕푡
= 푘

휕�푇(푦, 푡)
휕푦� −

휕푞�

휕푦
(2)

휕퐶(푦, 푡)
휕푡

= 퐷
휕�퐶(푦, 푡)

휕푦� − 퐾[퐶(푦, 푡) − 퐶∞] (3)

With initial and boundary conditions 

푢(푦, 0) = 0, 푇(푦, 0) = 푇∞, 퐶(푦, 0) = 퐶∞, 

푢(0, 푡) = 푈�푒��, 푇(0, 푡) = 푇∞ +
푈�

�

휈
(푇� − 푇∞)푡, 퐶(0, 푡) = 퐶∞ +

푈�
�

휈
(퐶� − 퐶∞)푡, 푡 > 0, 

푢(푦, 푡) → 0, 푇(푦, 푡) → 0, 퐶(푦, 푡) → 0,as 푦 → ∞ 

(4)

Introducing non-dimensionless variables into Equations (1)–(4). 

푦∗ =
푈�

휈
푦, 푡∗ =

푈�
�

휈
푡, 푢∗ =

푢
푈�

, 푇∗ =
푇 − 푇∞

푇�
, 퐶∗ =

퐶 − 퐶∞

퐶� − 퐶∞
,

퐾∗ =
휈

푈�
� 퐾, 푎∗ =

휈
푈�

� 푎.
⎭
⎬

⎫
(5)

Dropping out the star notation, our problem reduces to the set of following dimensionless partial 
differential equations 

휕푢(푦, 푡)
휕푡

=
휕�푢(푦, 푡)

휕푦� − 훤
휕�푢(푦, 푡)

휕푡휕푦� − 푀푢(푦, 푡) + 푇(푦, 푡) + 푁퐶(푦, 푡) (6)

푃푟���
휕푇(푦, 푡)

휕푡
=

휕�푇(푦, 푡)
휕푦� (7)

휕퐶(푦, 푡)
휕푡

=
1

푆푐
휕�퐶(푦, 푡)

휕푦� − 퐾퐶(푦, 푡) (8)

푢(푦, 0) = 0, 푇(푦, 0) = 0, 퐶(푦, 0) = 0, 푦 ≥ 0,
푢(0, 푡) = 푒푥푝( 푎푡), 푇(0, 푡) = 푡, 퐶(0, 푡) = 푡, 푡 > 0,
푢(푦, 푡) → 0, 푇(푦, 푡) → 0, 퐶(푦, 푡) → 0,as 푦 → ∞.

� (9)

To obtain a model with fractional derivative replace integer derivative of order one with non-integer order 
α. 
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퐷�
�푢(푦, 푡) =

휕�푢(푦, 푡)
휕푦� − 훤퐷�

� 휕�푢(푦, 푡)
휕푦� − 푀푢(푦, 푡) + 푇(푦, 푡) + 푁퐶(푦, 푡) (10)

푃푟��� 퐷�
� 푇(푦, 푡) =

휕�푇(푦, 푡)
휕푦�  (11)

퐷�
�퐶(푦, 푡) =

1
푆푐

휕�퐶(푦, 푡)
휕푦� − 퐾퐶(푦, 푡) (12)

where Caputo-Fabrizio time-fractional derivative[11] is define by 

퐷�
�푢(푦, 푡) = �

��� ∫ 푒푥푝 ���(���)
���

��
�

��(�,�)
��

푑휏, 0 1   (13)

3. Solution of the problem 
3.1. Temperature field for ퟎ < 휶 < ퟏ 

Applying Laplace transform to equation Equation (11) and using Equation (9), we get  

휕�푇� (푦, 푞)
휕푦� −

푃푟��� 푞
(1 − 훼)푞 + 훼

푇� (푦, 푞) = 0 (14)

satisfy the conditions  

푇(푦, 푞) =
1

푞� , 푇(푦, 푞) → 0, as 푦 → ∞ (15)

Solution of Equation (14) subject to Equation (15) is as follow 

푇(푦, 푞) =
1
푞

∗
1
푞

푒
���

����� �
(���)���

 (16)

Applying inverse Laplace transform to Equation (16) by using (A10) as well as convolution theorem, we 
get 

푇(푦, 푡) = � 퐻(푡 − 휏)
�

�
�1 −

2푃푟���

휋
�

푠푖푛 � 푦
√1 − 훼

푥�

푥�푃푟��� + 푥��

∞

�
푒� ��

�������푑푥� 푑휏 (17)

3.1.1. Nusselt number for ퟎ < 휶 < ퟏ 
Heat transfer rate from plate to the fluid in terms of Nusselt number can be obtained by using the following 

expression and expressed in terms of generalized G-function. 

푁푢 = −
휕푇(푦, 푡)

휕푦 �
���

= �푃푟��� 훾 퐺
�,��

�,��
(−훼훾, 푡) (18)

3.1.2. Temperature field for 휶 → ퟏ 
For α → 1 in Equation (16), the expression for temperature is given as 

푇(푦, 푡) = � 퐻(푡 − 휏)
�

�
푒푟푓푐 �

푦�푃푟���

2√휏
� 푑휏 (19)

3.1.3. Nusselt number for 휶 → ퟏ 
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푁푢 = −
휕푇(푦, 푡)

휕푦 �
���

= �푃푟���푅�
�,�

(0,0, 푡) (20)

3.2. Species concentration for ퟎ < 휶 < ퟏ 
Applying the Laplace transform to Equation (13) and using Equation (9) the, we find that 

퐶(푦, 푞) =
1

푞� 푒
��√��� ���

���� , 푏 =
퐾훼훾

훾푆푐 + 퐾
푎푛푑푎� = 훼훾 (21)

To obtain inverse Laplace of Equation (21), in more suitable form 

퐶�(푦, 푞) =
푞 + 푎

푞� ∗
푒

��√��� ���
����

푞 + 푎
 (22)

Applying inverse Laplace transform to Equation (21)  

퐶(푦, 푡) = � (퐻(푡 − 휏) + 푎(푡 − 휏))
�

�
푒�����푑휏 − 

−
푦�푏 − 푎�

2√휋
� (퐻(푡 − 휏) + 푎(푡 − 휏))

�

�
�� �

푒���

�휉
�푒�����������

�� ��� �퐼� �2�(푏 − 푎�)푢휉�� 푑휉푑푢
�

�

∞

�
� 푑휏 

(23)

3.2.1. Sherwood number for ퟎ < 휶 < ퟏ 
Mass transfer rate from plate to the fluid in terms of Sherwood number can be obtained by using the 

following expression. 

푆ℎ = −
휕퐶(푦, 푡)

휕푦 �
���

= �
1

√푎�

�

�
푒푟푓��푎�(푡 − 휏)� �

푒���

√휋휏
+

1
√푏

푒푟푓�√푏휏�� 푑휏 (24)

3.2.2. Species concentration for 휶 → ퟏ 

퐶(푦, 푞) = � 퐻(푡 − 휏)훹(푦, 휏, 푎, 0)
�

�
푑휏 (25)

3.2.3. Sherwood number for 휶 → ퟏ 
Rate of mass transfer for Walters’-B fluid is 

푆ℎ = −
휕퐶(푦, 푡)

휕푦 �
���

= �
1

√훾

�

�
푒푟푓��훾(푡 − 휏)� �

푒���

√휋휏
푒푟푓�√푏휏�� 푑휏 (26)

3.3. Velocity field ퟎ < 휶 < ퟏ 
Applying the Laplace transform to Equation (13) and using the corresponding initial conditions, we find 

that 

휕�푢̄(푦, 푞)
휕푦� −

푞 + 푀훼 + 푀(1 − 훼)푞
(1 − 훼)푞 + 훼 − 훤푞

푢̄(푦, 푞) =
(1 − 훼)푞 + 훼

훤푞 − (1 − 훼)푞 − 훼
(푇� (푦, 푞) + 푁퐶�(푦, 푞)) (27)

푢(0, 푞) =
1

푠 − 푎
, 푢(푦, 푞) → 0,as 푦 → ∞ (28)

The Equation (27) is second order non-homogeneous differential equations and its solution subject to 
condition (28) is 
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푢̄(푦, 푞) =
1

푞 − 푎
푒

���(���)����
(����)��� + 

+

1
푞� (푞 + 훼훾)�

푃푟��� 푞 훾�(훤푞 − 훼)훾 − 푞� + �(푞 + 푀훼)훾 + 푀푞�(푞 + 훼훾)
�푒

���
����� ��

���� − 푒
���(����)����

(����)��� � + 

+

푁
푞� (푞 + 훼훾)�

푆푐(푞(훾 + 퐾) + 퐾훼훾)�(훤푞 − 훼)훾 − 푞� + �(푞 + 푀훼)훾 + 푀푞�(푞 + 훼훾)
. 

. �푒�����(�(���)����)
���� − 푒

���(����)����
(����)��� � 

(29)

3.4. Limiting case when 휞 → ퟎ (viscous fluid) 

푢̄(푦, 푞) =
1

푞 − 푎
푒���(���)����

���� + 

+

1
푞� (푞 + 훼훾)�

�(푞 + 푀훼)훾 + 푀푞�(푞 + 훼훾) − 푃푟��� 푞 훾(훼훾 + 푞)
�푒

���
����� ��

���� − 푒���(����)����
���� � + 

+

푁
푞� (푞 + 훼훾)�

�(푞 + 푀훼)훾 + 푀푞�(푞 + 훼훾) − 푆푐(푞(훾 + 퐾) + 퐾훼훾)(훼훾 + 푞)
∗ 

∗ �푒�����(�(���)����)
���� − 푒���(����)����

���� � 

(30)

4. Numerical results and discussions 
Generalized Walters’-B fluid model is being solved analytically by applying the Laplace transform 

method satisfying all levied initial and boundary conditions. Numerical results for velocity, concentration and 
temperature are showed graphically for respective parameters like effective the Prandtl number, 푃푟���, the 
magnetic field parameter M, the permeability of porous medium K, the radiation conductivity parameter Nr, 
the ratio of buoyancy forces N, the Schmidt number Sc, the fractional parameter α and time t.  

Figure 1 is plotted to see the influence of radiation conduction parameter Nr on the temperature of 
Walters’-B fluid. It can be seen from the figure that by increasing the value of Nr the temperature of the fluid 
increases. Physically, larger the value of parameter R, the ratio of conductivity dominates across the radiation. 
Consequently the boundary layer thickness also increases. 

Figure 2 is plotted to see the effect of fractional parameter α on temperature of Walters’-B fluid. The 
temperature is an increasing function of α as shown in Figure 2. For large values of alpha and small values of 
time, temperature decreases near the plate region.  

Effect of Pr on the temperature is depicted in Figure 3. Its observable from Figure 3 that by raising the 
value of Prandtl number the temperature of the fluid decreases. As expected increasing Pr reduces the thermal 
conduction and raises the viscosity of the fluid leads the decrease in the thickness of thermal boundary layer. 

Concentration is diagrammed versus y in Figure 4 for several fractional parameter α. It can be envisioned 
that by increasing the value of α concentration increases and is minimum near the plate. 
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Effect of parameter of permeability of porous medium K can be checked in Figure 5 which is plotted 
against y by fixing the values of other parameters. It can be seen that concentration is a decreasing function of 
K. Effect of dimensionless Schmidt number Sc on concentration can be seen from Figure 6. It is evident that 
by increasing the value of Sc the concentration decreases which is due to the reason that for larger values of 
Sc molecular diffusivity decreases and it leads to decrement the boundary layer of concentration. 

Variation of 훼 on fluid’s velocity is drawn in Figure 7. It is distinctly figured that by maximizing the 
value of 훼 velocity also step-ups. It is because of the fact that by employing fractional model flow can be 
raised; i-e the fractional fluid has greater velocity than ordinary fluid.  

Velocity of the Walter’s fluid decrements by raising the value of chemical reaction parameter K, as 
pictured in Figure 8. It’s distinctly showed that by increase in the value of K lead to fall in the velocity of the 
fluid. Magnetic field parameter M as shown in Figure 9. Physically it is due to the fact that drag force is 
effecting fluid’s velocity hence opposing motion of the fluid. Figure 10 indicates the boundary forces 
parameter N verses y on the velocity visibilities. It can be seen that velocity increases by increasing the values 
of N. The velocity is decreasing function of Sc as displayed in Figure 11. Physically it is due to the reason that 
the concentration buoyancy effect decreases by increasing the values of Sc causing a reduction in the velocity 
of the fluid besides the boundary layer thickness.  

By increasing the value of effective Prandtl number the fluid’s velocity step-downs which is due to the 
reason that fluid’s with greater values of Prandlt number have more viscosity and less thermal conductivity, 
forming the fluid more denser and hence decreases fluid’s velocity as shown in Figure 12. 

Velocity is a decreasing function of Walter’s parameter 훤 as shown in Figure 13. Figure 14 is plotted to 
check influence of time on fluid’s velocity. It can be figured that by maximizing the value of time fluid’s 
velocity also step-ups. Figures 15–17 are plotted to see the substantiation of inversion algorithms. The 
overlapping results indicate that by applying the inversion algorithm the obtained results are same. Figure 18 
shows the comparison of fractional Walter’s fluid and fractional viscous fluid. It can be experienced that 
fractional viscous fluid is faster than fractional Walters’-B fluid. 

 
Figure 1. Temperature profile for various Nr when 훼 = 0.5 and 푃푟 = 12. 
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Figure 2. Temperature profile for various 훼 when 푃푟 = 10 and 푁푟 = 1.5. 

 
Figure 3. Temperature profile for various Pr when 푁푟 = 10 and 푃푟 = 10. 

 
Figure 4. Concentration profile for various 훼 when 퐾 = 0.2, 푆푐 = 2 and 푃푟 = 10. 
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Figure 5. Concentration profile for various K when 훼 = 0.5, 훾 = 3.5, 푆푐 = 2 and 푃푟 = 12. 

 
Figure 6. Concentration profile for various Sc when 훾 = 0.1, 훼 = 0.1 and 퐾 = 0.3. 

 
Figure 7. Velocity profile for various 훼 when 훾 = 0.9, 푁 = 0.5, 훤 = 0.3, 푆푐 = 0.22, 푃푟��� = 10 and 퐾 = 3.5. 
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Figure 8. Velocity profile for various K when 훼 = 0.2, 푁 = 0.6, 훤 = 0.4, 푆푐 = 0.22, 푃푟��� = 10, 푀 = 1.5 and 훾 = 0.3. 

 
Figure 9. Velocity profile for various M when 훼 = 0.8, 푁 = 0.1, 훤 = 0.2, 푆푐 = 0.22, 푃푟��� = 9, 퐾 = 1.5 and 훾 = 0.2. 

 
Figure 10. Velocity profile for various N when 훼 = 0.6, 푀 = 6.5, 훤 = 0.2, 푆푐 = 0.22, 푃푟��� = 9, 퐾 = 3.5 and 훾 = 0.2. 
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Figure 11. Velocity profile for various Sc when 훼 = 0.2, 푀 = 2.5, 훤 = 0.2, 푁 = 1.5, 푃푟��� = 12, 퐾 = 2.2 and 훾 = 0.1. 

 
Figure 12. Velocity profile for various 푃푟��� when 훼 = 0.5, 푀 = 0.2, 훤 = 2.2, 푁 = 0.7, 푆푐 = 3.8, 퐾 = 0.5 and 훾 = 0.3. 

 
Figure 13. Velocity profile for various 훤when 훼 = 0.2, 푀 = 1.5, 푃푟��� = 10, 푁 = 0.5, 푆푐 = 0.22, 퐾 = 2.5 and 훾 = 0.3. 
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Figure 14. Velocity profile for various t when 훼 = 0.2, 푀 = 1.5, 푃푟��� = 10, 푁 = 0.6, 푆푐 = 0.22, 퐾 = 2.5, 훤 = 0.4 and 훾 = 0.3. 

 
Figure 15. Velocity comparison graph when 훼 = 0.2, 훾 = 0.9, 훤 = 0.3, 푀 = 1.5, 푃푟��� = 12 and 푡 = 0.5. 

 
Figure 16. Concentration comparison graph when 훼 = 0.2, 훾 = 0.2, 퐾 = 1.5, 푃푟 = 12 and 푡 = 0.3. 
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Figure 17. Temperature comparison graph when 훼 = 0.5, 푁푟 = 7, 푃푟 = 12 and 푡 = 0.2. 

 
Figure 18. Velocity comparison graph of Walters’-B fluid & viscous fluid. 

Tables 1–3 are made to check the effects of fractional parameter α on dimensionless temperature, velocity 
and concentration. The inverse Laplace transforms have been calculated numerically by using inversion 
algorithm, namely the Stehfest’s algorithm and the Tzou’s algorithm as shown in Table 4. 

Table 1. Effect of fractional parameter α on dimensionless temperature when Pr = 10 & Nr = 1.5. 

풚 푻(풚, 풕) 푻(풚, 풕) 푻(풚, 풕) 푻(풚, 풕) 푻(풚, 풕) 푻(풚, 풕) 

 휶 = ퟎ 휶 = ퟎ. ퟐ 휶 = ퟎ. ퟒ 휶 = ퟎ. ퟔ 휶 = ퟎ. ퟖ 휶 = ퟏ 
0 5 5 5 5 5 5 
0.1 4.094 4.213 4.319 4.404 4.468 4515 
0.2 3.352 3.548 3.724 3.870 3.982 4.068 
0.3 2.744 2.985 3.206 3.392 3.541 3.657 
0.4 2.247 2.511 2.755 2.967 3.141 3.280 
0.5 1.839 2.110 2.364 2.589 2.779 2.935 
0.6 1.506 1.773 2.026 2.255 2.453 2.620 
0.7 1.233 1.489 1.733 1.959 2.160 2.333 
0.8 1.009 1.249 1.481 1.699 1.898 2.073 
0.9 0.826 1.048 1.263 1.470 1.663 1.837 
1.0 0.677 0.878 1.077 1.270 1.454 1.624 
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Table 2. Effect of fractional parameter 훼 on dimensionless concentration when 퐾 = 0.2, 푆푐 = 2& 푃푟 = 10. 

풚 푪( 풚, 풕) 푪( 풚, 풕) 푪( 풚, 풕) 푪( 풚, 풕) 푪( 풚, 풕) 푪( 풚, 풕) 

 휶 = ퟎ 휶 = ퟎ. ퟐ 휶 = ퟎ. ퟒ 휶 = ퟎ. ퟔ 휶 = ퟎ. ퟖ 휶 = ퟏ 

0 10 10 10 10 10 10 

0.1 8.681 8.800 8.888 8.955 9.007 9.048 

0.2 7.536 7.744 7.899 9.018 8.111 8.184 

0.3 6.543 6.814 7.020 7.178 7.302 7.401 

0.4 5.680 5.995 6.237 6.425 6.573 6.691 

0.5 4.931 5.275 5.541 5.749 5.915 6.048 

0.6 4.280 4.641 4.922 5.144 5.322 5.466 

0.7 3.716 4.083 4.371 4.602 4.787 4.938 

0.8 3.226 3.592 3.882 4.116 4.305 4.461 

0.9 2.800 3.159 3.447 3.681 3.871 4.029 

1.0 2.431 2.779 3.061 3.291 3.480 3.638 

Table 3. Effect of fractional parameter 훼 on dimensionless velocity when Preff = 10, t = 0.5, K = 1.5, M = 1.5 & Sc = 0.22. 

풚 풖( 풚, 풕) 풖( 풚, 풕) 풖( 풚, 풕) 풖( 풚, 풕) 풖( 풚, 풕) 풖( 풚, 풕) 

 휶 = ퟎ 휶 = ퟎ. ퟐ 휶 = ퟎ. ퟒ 휶 = ퟎ. ퟔ 휶 = ퟎ. ퟖ 휶 = ퟏ 

0 1.134 1.134 1.134 1.134 1.134 1.134 

0.1 0.946 0.956 0.966 0.975 0.983 0.991 

0.2 0.789 0.807 0.823 0.838 0.852 0.965 

0.3 0.659 0.681 0.701 0.720 0.737 0.754 

0.4 0.551 0.575 0.597 0.619 0.638 0.657 

0.5 0.461 0.486 0.510 0.532 0.553 0.573 

0.6 0.387 0.412 0.435 0.457 0.479 0.499 

0.7 0.325 0.349 0.372 0.394 0.415 0.435 

0.8 0.274 0.297 0.318 0.339 0.359 0.379 

0.9 0.231 0.252 0.273 0.293 0.312 0.330 

1.0 0.196 0.215 0.234 0.253 0.271 0.288 

Table 4. Validation of obtained numerical results with Tzou’s algorithm. 

풚 Stehfest’s Tzou’s Stehfest’s Tzou’s Stehfest’s Tzou’s 

 u(y,t) u(y,t) T(y,t) T(y,t) C(y,t) C(y,t) 

0 1.134 1.133 0.2 0.2 0.3 0.3 

0.1 0.956 0.956 0.17 0.170 0.265 0.265 

0.2 0.807 0.806 0.144 0.144 0.235 0.235 

0.3 0.681 0.680 0.122 0.122 0.208 0.208 

0.4 0.575 0.575 0.103 0.103 0.184 0.184 

0.5 0.486 0.486 0.088 0.088 0.163 0.163 

0.6 0.412 0.411 0.074 0.074 0.144 0.144 

0.7 0.349 0.349 0.063 0.063 0.127 0.127 

0.8 0.297 0.296 0.053 0.053 0.113 0.113 

0.9 0.252 0.252 0.045 0.045 0.100 0.100 

1.0 0.215 0.215 0.038 0.038 0.088 0.088 
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5. Conclusion 
The Caputo-Fabrizio fractional derivatives approach is applied to examine the unsteady MHD free 

convective flow of Walters’-B fluent with heat conveying analysis across an exponential isothermal upright 
plate engrafted in a poriferous medium. The consequent solution of the problem was obtained by applying 
Laplace transform method. Limiting result was extracted corresponding to Walters’-B fluid and viscid fluid. 
The obtained results were examined graphically likewise numerically for time fractional parameter α, effective 
Prandtl number, 푃푟���, magnetic field parameter M, permeability of porous medium K, radiation conduction 
parameter Nr, ratio of buoyancy forces N, Schmidt number Sc, and time t. By the following remark we conclude 
this article. 

1) As the value of fractional parameter α, increases, the temperature, concentration and velocity 
increases.  

2) We can see a reduction in the temperature of the fluid by enhancing the values of Prandtl number. 
3) Increasing the value of chemical reaction K, concentration decreases and velocity of fluid lead to 

fall. 
4) Concentration drop-offs by maximizing the value of Schmidt number Sc. 
5) Velocity is a decreasing function of magnetic parameter M and chemical reaction parameter K. 
6) As we increase the value of effective Prandtl number 푃푟��� , as well as Walter’s parameter 훤 , 

velocity decreases. 
7) Fractional viscid fluid shows higher velocity than fractional Walters’-B fluid. 
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Nomenclature Greek symbols 

퐵 magnetic field strength 훽�  volumetric coefficient of expansion with concentration 

퐶 dimensional concentration in the fluid 훽� volumetric coefficient of thermal expansion 

퐶�
�  concentration of the fluid near the plate 휎 electric conductivity 

퐶�
�  concentration of the fluid far away from the plate 푘 thermal conductivity of the fluid 

푐� specific heat at constant pressure 휌 density 

퐷 chemical molecular diffusivity 휇 coefficient of viscosity 

푔 acceleration due to gravity 휈 kinematic coefficient of viscosity 

퐾 permeability of porous medium 훤 = ����
�

���  Walters’-B parameter 

푘� Rossel and mean attenuation coefficient  

푀 = ����
�

���
�  magnetic field parameter  

푁 = ��(�����)
����

 ratio of the buoyancy forces  

푁� = ��
�

�
���

푇�
�  radiation conduction  

푃푟 = ���

�
 Prandtl number  

푃푟��� = ��
����

푃푟��� effective Prandtl number  

푞 the transform parameter  

푞� radioactive heat flux  

푆푐 = �
�

 Schmidt number  

푇 dimensionless temperature of the fluid  

푇�
�  constant temperature of the plate  

푇�
�  free stream temperature  

푢 velocity of the fluid   

푈�
� = ���

�
��

�
�

�
푇� characteristic velocity of the plate  

 


