“Reducing the number of dimensions of the possible solution space” as a method for finding the exact solution of a system with a large number of unknowns

Aleksa Srdanov

Abstract


Solving linear systems with a relatively large number of equations and unknowns can be achieved using an approximate method to obtain a solution with specified accuracy within numerical mathematics. Obtaining the exact solution using the computer today is only possible within the framework of symbolic mathematics. It is possible to define an algorithm that does not solve the system of equations in the usual mathematical way, but still finds its exact solution in the exact number of steps already defined. The method consists of simple computations that are not cumulative. At the same time, the number of operations is acceptable even for a relatively large number of equations and unknowns. In addition, the algorithm allows the process to start from an arbitrary initial n-tuple and always leads to the exact solution if it exists.

 


Keywords


linear system equations; extremely large number of un knowns; hyperplanes

Full Text:

Untitled

References


Aleksa Srdanov The universal formulas for the number of partitions 2018, Proc. Indian Acad. Sci. (Math.Sci.) 128:40, https://doi.org/10.1007/s12044-018-0418-z

N. Higham Accuracy and Stability of Numerical Algorithms, 2000.

A. Srdanov, R. Stefanovi´c How to solve a system of linear equations with extremely many unknown (In Serbian), INFOTEH, Jahorina, Vol. 16, March 2017., pp. 593-596. https://www.infoteh.rs.ba/zbornik/2017/radovi/RSS-2/RSS-2-12.pdf

A. Srdanov, R. Stefanovi´c, N. Ratkovi´c Kovaˇcevi´c, A. Jovanovi´c and D. Milovanovi´c The Method of External Spiral for Solving Large System of Linear Equations Military Technical Courier 66, broj 2, April-Jul 2018.

A. Srdanov, R. Stefanovi´c, N. Ratkovi´c Kovaˇcevi´c, A. Jovanovi´c and

D. Milovanovi´c i Dj. Marjanovi´c Method of trihedrals for finding the exact solution of a linear system with a large number of unknowns (In Serbian), INFOTEH, Jahorina, Vol. 16, March 2018., pp. 388-392. https://www.infoteh.rs.ba/zbornik/2018/radovi/RSS-3/RSS-3-1.pdf

Zvonimir Boht Numeriˇcne metode, Drˇzavna zaloˇzba Slovenije, Ljubl- jana, 1978. (In Slevenian).

David A. Randall An Introduction to Numerical Modeling of the Atmo- sphere Chapter 6, Colorado State University, 2015.

J. Stoer, R. Bulirsch Introduction to Numerical Analysis, Texts in Ap- plied Mathematics 12, Springer 2002.




DOI: http://dx.doi.org/10.24294/ijmss.v0i0.1075

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.