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ABSTRACT
In this paper, we introduce some certain fuzzy soft algebraic notions of generalized concepts in LA-Γ-semigroups

and study some properties of their families.
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1. Introduction
In[25], Zadeh introduced the notion of fuzzy subset.

The notion of a fuzzy ideal in Γ -ring was first
introduced by Jun and Lee[10]. The concept of an
LA-semigroup (also known as AG-groupoids) was
defined by Kazim and Naseeruddin[12]. The notion of
Γ-semigroup was introduced by Sen[19,20].

Shah and Rehman[22], introduced the notion of
LA-Γ -semigroup (Γ -AG-groupoid) and discussed some
properties of Γ-ideals and Γ-bi-ideals in Γ-AG-groupoids.
Moreover in[23], they defined fuzzy Γ -ideals in a
Γ -AG-groupoid and studied some of its properties.
Abbasi and Basar[1], introduced the notion of
(m,n) - Γ -ideal of an LA- Γ -semigroup. In[3], Akın
investigated generalizations of some concepts in
LA-Γ-semigroup.

Fuzzy soft sets which has drawn a steadily
increasing attention of the researchers and has led to
remarkable development in some research areas also
has been a very dynamic area for the algebraists. In this
paper, we study some certain concepts of the fuzzy soft
sets in LA-(m,n)-Γ-semigroups.
2. Preliminaries

In this section we recall certain definitions and
results in the notion of LA-Γ-semigroups from the
references[1,3,13,14,22,23,25] and we also recall certain
definitions in the concept of (fuzzy) soft sets from the
references[2,4-9,11,15-18,24].

2.1 LA-Γ-semigroups
Let S and Γ be nonempty sets. We call S to be an

LA-Γ-semigroup if there exists a mapping S×Γ×S→S,
written as (a,γ,b) and denoted by aγb such that S satisfies
the identity (aγb)αc=(cγb)αa for all a,b,c∈S and γ,α∈Γ.
If S is an LA-Γ-semigroup and A,B⊆S, then we denote
AΓB:={aγb|a∈A,b∈B and γ∈Γ}. For a positif integer
m, the power of B is defined as
follows:B^m=(...((BΓB)ΓB)...)ΓB.

Example 2.1
(i) ([22], Example 2) Let Γ = {1,2,3} . Define a

mapping � � Γ � � � � by aγb = b − γ − a for all
a,b ∈ � and γ ∈ Γ , where "−" is a usual subtraction of
integers. Then � is a LA-Γ-semigroup.

(ii) Let � = 0, + ∞ = Γ . Define a mapping S �
Γ � S � S by aγb = b

γ.a
for all a,b ∈ S and γ ∈ Γ. Then S

is a LA-Γ-semigroup.
(iii) Let � = �� � = Γ . Define a mapping S �

Γ � S � S by AγB = AT + γ + B for all A,B ∈ S and γ ∈
Γ. Then S is a LA-Γ-semigroup.

Definition 2.2 Let S be an LA-Γ-semigroup.
(i) An element e of S is called left (right) identity if

eγa = a(aγe = a) for all a ∈ S and γ ∈ Γ.
(ii) S is called a band if its all elements are

idempotent, i.e., aγa = a for all a ∈ S and γ ∈ Γ
(iii) S is called a locally associative

LA-Γ-semigroup if (aγa)αa = aγ(aαa) for all a ∈ S and
γ,α ∈ Γ.
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Example 2.3 ([21], Example 2.8.) Let S be a locally
associative AG-groupoid (LA-semigroup) defined by the
following Cayley table.

⋅ a b c

a c c b

b b b b

c b b b

Let for all a,b ∈ S and α ∈ Γ, define a mapping S �
Γ � S � S by aαb = a ⋅ b. Then S is a locally associative
LA-Γ-semigroup.

Lemma 2.4 ([14], Proposition 60) Let S be a locally
associative LA-Γ -semigroup and m be a positif integer.
Than amΓbm = (aΓb)m for all a,b ∈ S.

Proposition 2.5 Let S be an LA-Γ-semigroup.
(i) The left (right) identity in an LA-Γ-semigroup is

unique if it exists.
(ii) If S contains a right identity, then it becomes a

commutative Γ-semigroup.
(iii) Every LA-Γ-semigroup with left identity satisfy

the equalities aγ(bαc) = bγ(aαc) and (aγb)α(cβd) =
(dγc)α(bβa)for all a,b,c,d ∈ S and γ,α,β ∈ Γ.

(iv) S is Γ -medial, i.e., (aαb)β(cγd) =
(aαc)β(bγd) for all a,b,c ∈ S and γ,α,β ∈ Γ in S.

Definition 2.6 Let S be an LA-Γ-semigroup.
(i) A nonempty subset A of S is called a

LA-Γ-subsemigroup of S if aγb ∈ A for all a,b ∈ A and
γ ∈ Γ,

(ii) A nonempty subset A of S is called a left (right)
Γ-ideal of S if SΓA ⊆ A (AΓS ⊆ A). A nonempty subset A
of S is called a Γ-ideal of S if it is both a left and a right
Γ-ideal of S.

(iii)A nonempty subset A of S is called a generalized
Γ-bi-ideal of S if (AΓS)ΓA ⊆ A.

(iv) An LA- Γ -subsemigroup A of S is called a
Γ-bi-ideal of S if (AΓS)ΓA ⊆ A.

(v) A nonempty subset A of S is called a Γ-interior
ideal of S if (SΓA)ΓS ⊆ A.

Lemma 2.7[22,23] Let S be an LA-Γ-semigroup. If S
is an LA- Γ -semigroup with left identity e , then every
right Γ-ideal of S is a left Γ-ideal of S .

2.2 Fuzzy subsets of LA-Γ-semigroups

A function f from a nonempty set S to the unit
interval [0,1] is called a fuzzy subset of S . Let f,g be
fuzzy subsets of S, then f ⊆ g means that f(a) ≤ g(b) for
all a,b ∈ S. For t ∈ [0,1], the set ft = {a ∈ S|f(a) ≥ t} is
called a level set of f. Let A be a subset of S, then χA is
denoted the characteristic function of A defined as, for all
� ∈ �,

χA(x) =
1 , x ∈ A
0 , x ∉ A.

For all (fi)i∈Λ,(gi)i∈Λ ∈ �(S) and x ∈ S ,

(∧i∈Λfi)(x) = ∧i∈Λfi(x) and (∨i∈Λfi)(x) = ∨i∈Λfi(x) . Let

f,g be any fuzzy subsets of a LA-Γ-semigroup S and x ∈

S, then the Γ-product f∘Γg is defined by
(f∘Γg)(x)

=
∨

x=aγb
f(a) ∧ g(b) , ∃a,b ∈ S and γ ∈ Γ such that x = aγb

0 , otherwise.

Definition 2.8 Let S be an LA-Γ-semigroup and f be
a fuzzy subset of S.

(i) f is called a fuzzy LA-Γ -subsemigroup of S if
f(aγb) ≥ f(a) ∧ f(b) for all a,b ∈ S and γ ∈ Γ.

(ii) f is called a fuzzy left (right) Γ -ideal of S if
f(aγb) ≥ f(b) (f(aγb) ≥ f(a)) for all a,b ∈ S and γ ∈ Γ. f
is called a fuzzy Γ-two-sided ideal S if it is both a fuzzy
left and fuzzy right ideal of S.

(iii) f is called a fuzzy generalized Γ-bi-ideal of S if
f((aγb)αc) ≥ f(a) ∧ f(c) for all a,b,c ∈ S and γ,α ∈ Γ.

(iv) A fuzzy LA-Γ-subsemigroup f is called a fuzzy
Γ-bi-ideal of S if f((aγb)αc) ≥ f(a) ∧ f(c) for all a,b,c ∈
S and γ,α ∈ Γ.

(v) f is called a fuzzy Γ -interior ideal of S if
f((aγx)αb) ≥ f(x) for all a,b,x ∈ S and γ,α ∈ Γ.

Lemma 2.9[23] Let S be an LA-Γ-semigroup.
(i) Let ∅ ≠ A ⊆ S. Then A is a LA-Γ-subsemigroup

of S if and only if the characteristic function χA of A is a
fuzzy LA-Γ-subsemigroup of S.

(ii Let ∅ ≠ A ⊆ S . Then A is a left (right)
LA-Γ-ideal of S if and only if the characteristic function
χA of A is a fuzzy left (right) LA-Γ-ideal of S.

(iii) A fuzzy subset f of S is fuzzy
LA-Γ-subsemigroup of S if and only if the level set of f is
LA-Γ-subsemigroup of S.

(iv) A fuzzy subset f of S is fuzzy left (right)
LA-Γ -ideal of S if and only if the level set of f is left
(right) LA-Γ-ideal of S.



3

2.3 (Fuzzy) LA-(ܕ,ǡ)-Γ-ideals

The following definition introduces some certain
concepts of LA-(m,n)-Γ-semigroups.

Definition 2.10[3]Let S be LA-Γ-semigroup.
(i) For an element a ∈ S and positive integer m, the

power of a is defined as the set am = (...((aΓa)Γa)...)Γa,
where a1 = {a} and a2 = aΓa (See[14]).

(ii) A nonempty subset A of S is called an
LA- (m,n) -Γ -subsemigroup of S if amΓbn ⊆ A for all
a,b ∈ A.

(iii) A nonempty subset A of S is called an
LA- (m,n) - Γ -left (LA- (m,n) - Γ -right) ideal of S if
smΓan ⊆ A (amΓsn ⊆ A) for all s ∈ S,a ∈ A. A nonempty
subset A of an LA- Γ -semigroup S is called a
LA- (m,n) - Γ -two sided ideal of S if it is both an
LA-(m,n)-Γ-left and an LA-(m,n)-Γ-right ideal of S.

(iv) A nonempty subset A of S is called a
generalized LA-(m,n)-Γ-bi-ideal of S if (amΓs)Γbn ⊆ A
for all s ∈ S,a,b ∈ A.

(v) An LA-(m,n) -Γ-subsemigroup A of S is called
an LA- (m,n) -Γ -bi-ideal of S if (amΓs)Γbn ⊆ A for all
s ∈ S,a,b ∈ A.

(vi) A nonempty subset A of S is called an
LA- (m,n) -Γ -interior ideal of S if ((s1)mΓa)Γ(s2)n ⊆ A
for all s1,s2 ∈ S,a ∈ A.

The following definition introduces some certain
fuzzy concepts of LA-(m,n)-Γ-semigroups.

Definition 2.11[3] Let f be a fuzzy subset of S.
(i) f is called a fuzzy LA-(m,n)-Γ-subsemigroup of

S if f(x) ≥ f(a) ∧ f(b) for all a,b ∈ S and x ∈ amΓbn.
(ii) f is called a fuzzy left (right) LA-(m,n)-Γ-ideal

of S if f(x) ≥ f(b) (f(x) ≥ f(a)) for all a,b ∈ S and x ∈
amΓbn . f is called a fuzzy LA-(m,n)-Γ-two-sided ideal S
if it is both a fuzzy left and fuzzy right ideal of S.

(iii) f is called a fuzzy generalized
LA- (m,n) - Γ -bi-ideal of S if f(x) ≥ f(a) ∧ f(c) for all
a,b,c ∈ S and x ∈ (amΓb)Γcn.

(iv)A fuzzy LA-Γ-subsemigroup f is called a fuzzy
LA- (m,n) - Γ -bi-ideal of S if it is a fuzzy generalized
LA-(m,n)-Γ-bi-ideal of S.

(v) f is called a fuzzy LA-(m,n)-Γ-interior ideal of S
if f(x) ≥ f(c) for all a,b,c ∈ S and x ∈ (amΓc)Γbn.

Proposition 2.12[3]Let S be an LA-Γ-semigroup.
(i) A is an LA- (m,n) -Γ -subsemigroup of S if and

only if χA is a fuzzy LA-(m,n)-Γ-subsemigroup of S.

(ii) A is an left (right) LA-(m,n)-Γ-ideal of S if and
only if χA is a fuzzy left (right) LA-(m,n)-Γ-ideal of S.

(iii) A is a generalized LA-(m,n)-Γ-bi-ideal of S if
and only if χA is a fuzzy generalized
LA-(m,n)-Γ-bi-ideal of S.

(iv) A is an LA-(m,n)-Γ-bi-ideal of S if and only if
χA is a fuzzy LA-(m,n)-Γ-bi-ideal of S.

(v) A is an LA- (m,n) -Γ -interior ideal of S if and
only if χA is a fuzzy LA-(m,n)-Γ-interior ideal of S.

Proposition 2.13[3] Let S be an LA-Γ-semigroup.
(i) f is a fuzzy LA- (m,n) -Γ -subsemigroup of S if

and only if all of the nonempty level sets of f is an
LA-(m,n)-Γ-subsemigroup of S.

(ii) f is a fuzzy left (right) LA-(m,n)-Γ-ideal of S if
and only if all of the nonempty level sets of f is an left
(right) LA-(m,n)-Γ-ideal of S.

(iii) f is a fuzzy generalized LA-(m,n)-Γ-bi-ideal of
S if and only if all of the nonempty level sets of f is a
generalized LA-(m,n)-Γ-bi-ideal of S.

(iv) f is a fuzzy LA- (m,n) -Γ -bi-ideal of S if and
only if all of the nonempty level sets of f is an
LA-(m,n)-Γ-bi-ideal of S.

(v) f is a fuzzy LA-(m,n)-Γ-interior ideal of S if and
only if all of the nonempty level sets of f is an
LA-(m,n)-Γ-interior ideal of S.
2.4 Soft sets

Let U be an initial universe set and P be a set of
parameters. The power set of U is denoted by P(U) and A
is a subset of P . A pair (F,A) is called a soft set over U
where F is a mapping given by F:A � P(U) [18]. The pair
(U,P) denotes the collection of all soft sets on U with the
attributes from P and is called a soft class[15].

Definition 2.14[18] Let (F,A) and (G,B) be two soft
sets over U , (F,A) is called a soft subset of (G,B) ,
denoted by (F,A) ⊆ (G,B) , if (i) B ⊆ A , (ii)F(x) ⊆ G(x)
for each x ∈ B.

Definition 2.15[6,8,9,11] Let {(Fi,Ai)|i ∈ Λ} be a
family of soft sets in a soft class (U,P). Then

(i)The restricted intersection of the family
{(Fi,Ai)|i ∈ Λ} , denoted by ( r� )i∈Λ(Fi,Ai) , is the soft
set (F,A) defined as: A = i∈Λ� Ai, F(x) = i∈Λ� Fi(x)
(∀x ∈ A),

(ii) The extended intersection of the family
{(Fi,Ai)|i ∈ Λ} , denoted by ( e� )i∈Λ(Fi,Ai) , is the soft
set (F,A) defined as: A = i∈Λ� Ai , F(x) =
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i∈Λ(x)� Fi(x) (∀x ∈ A) where Λ(x) = {i|x ∈ Ai},
(iii) The restricted union of the family {(Fi,Ai)|i ∈

Λ} , denoted by ( r� )i∈Λ(Fi,Ai) , is the soft set (F,A)
defined as: A = i∈Λ� Ai , F(x) = i∈Λ� Fi(x)
(∀x ∈ A).

(iv) The extended union of the family {(Fi,Ai)|i ∈
Λ} , denoted by ( e� )i∈Λ(Fi,Ai) , is the soft set (F,A)
defined as: A = i∈Λ� Ai, F(x) = i∈Λ(x)� Fi(x) (∀x ∈
A) where Λ(x) = {i|x ∈ Ai},

Definition 2.16[6,8,11,16] Let {(Fi,Ai)|i ∈ Λ} be a
family of soft sets in a soft class (U,P). Then

(i) The ∧-intersection of the family {(Fi,Ai)|i ∈ Λ} ,
denoted by ∧i∈Λ(Fi,Ai) , is the soft set (F,A) defined as:
A = i∈Λ� Ai , H((xi)i∈Λ) = i∈Λ� Fi(xi)
(∀(xi)i∈Λ ∈ A),

(ii) The ∨ -union of the family {(Fi,Ai)|i ∈ Λ} ,
denoted by ∨i∈Λ(Fi,Ai) , is the soft set (F,A) defined as:
A = i∈Λ� Ai , H((xi)i∈Λ) = i∈Λ� Fi(xi)
(∀(xi)i∈Λ ∈ A),

(iii)The product of the family {(Fi,Ai)|i ∈ Λ} ,
denoted by i∈Λ� (Fi,Ai) , is the soft set (F,A) defined
as: A = i∈Λ� Ai , H((xi)i∈Λ) = i∈Λ� Fi(xi)
(∀(xi)i∈Λ ∈ A).
2.5 Fuzzy soft sets

Let U be an initial universe set and P be a set of
parameters. F(U) denotes the set of all fuzzy sets of U. A
pair (f,E) is called a fuzzy soft set over U , where f:E �
F(U) is a mapping[17]. The pair (U,P)� denotes the
collection of all fuzzy soft sets on U as initial set with the
attributes from P and is called a fuzzy soft class[2].

Definition 2.17[5] Let (f,E) be a fuzzy soft set over
U. For each α ∈ [0,1], the set (f,E)α = (fα,E) is called an
α-level set of (f,E), where fα a = f a α for each a ∈ E.
Obviously, (f,E)α is a soft set over U.

Definition 2.18[17] Let (f,E) and (g,H) be two fuzzy
soft sets over U , (f,E) is called a fuzzy soft subset of
(g,H), denoted by (f,E)⊆�(g,H), if

(i) E ⊆ H,
(ii) for each a ∈ E, f a ⊆ g(a).
Definition 2.19[2,16,17] Let {(fi,Ei)|i ∈ Λ} be a family

of fuzzy soft sets in a fuzzy soft class (U,P)� . Then
(i) The restricted intersection of the family

{(fi,Ei)|i ∈ Λ}, denoted by i∈Λ
r (fi,Ei)� , is a fuzzy soft set

(f,E), E = i∈Λ� Ei and for all x ∈ E, f(x) = ∧i∈Λfi(x).
(ii) The extended intersection of the family

{(fi,Ei)|i ∈ Λ}, denoted by i∈Λ
e (fi,Ei)� , is a fuzzy soft set

(f,E) , E = i∈Λ� Ei and for all x ∈ E , f(x) =
∧i∈Λ(x)fi(x) where Λ(x) = {i|x ∈ Ei},

(iii) The restricted union of the family {(fi,Ei)|i ∈ Λ},
denoted by �i∈Λ

r (fi,Ei) , is a fuzzy soft set (f,E) , E =

i∈Λ� Ei and for all x ∈ E, f(x) = ∨i∈Λfi(x).
(iv) The extended union of the family {(fi,Ei)|i ∈ Λ},

denoted by �i∈Λ
e (fi,Ei) , is a fuzzy soft set (f,E) , E =

i∈Λ� Ei and for all x ∈ E , f(x) = ∨i∈Λ(x)fi(x) where
Λ(x) = {i|x ∈ Ei}.

Definition 2.20[7,17] Let {(fi,Ei)|i ∈ Λ} be a family of
fuzzy soft sets in a fuzzy soft class (U,P)� . Then

(i) The fuzzy ∧ -intersection of the family
{(fi,Ei)|i ∈ Λ} , denoted by ∧ i∈Λ(fi,Ei) , is the soft set
(f,E) defined as: E = i∈Λ� Ei , f((xi)i∈Λ) = ∧i∈Λfi(xi)
(∀(xi)i∈Λ ∈ E),

(ii) The fuzzy ∨-union of the family {(fi,Ei)|i ∈ Λ} ,
denoted by ∨ i∈Λ(fi,Ei) , is the soft set (f,E) defined as:
E = i∈Λ� Ei, f((xi)i∈Λ) = ∨i∈Λfi(xi) (∀(xi)i∈Λ ∈ E).

(iii) The product of the family {(fi,Ei)|i ∈ Λ} ,
denoted by �

i∈Λ
(fi,Ei), is a fuzzy soft set (f,E), E =

i∈Λ� Ei and, f((xi)i∈Λ) = ∨ J⊆Λ
J is finite

(∧j∈Jfj(xj)).
2.6 Fuzzy Soft Sets in Γ-Semigroups

Akram et. al introduce some definitions of algebraic
structure of fuzzy soft sets in Γ-semigroups.

Definition 2.21[4] Let S be an Γ -semigroup
and (f,E) be a fuzzy soft set in the fuzzy soft class (S,P)� .

(i) (f,E) is called a fuzzy soft Γ-subsemigroup of S if
f(x) is a fuzzy Γ-subsemigroup of S for all x ∈ E.

(ii) (f,E) is called a fuzzy soft left (right) Γ-ideal of
S if f(x) is a fuzzy left (right) Γ-ideal of S for all x ∈ E.
(f,E) is called a fuzzy soft Γ-ideal of S if f(x) is both a
fuzzy left and fuzzy right Γ-ideal of S for all x ∈ E.

(iii) (f,E) is called a fuzzy soft Γ-bi-ideal of S if f(x)
is a fuzzy Γ-bi-ideal of S for all x ∈ E.

(iv) (f,E) is called a fuzzy soft Γ-interior ideal of S if
f(x) is a fuzzy Γ-interior ideal of S for all x ∈ E.
3. Main results

In this paper, we consider an LA-Γ-semigroup S as
the initial universe and we introduce the fuzzy soft
concepts in LA-(m,n)-Γ-semigroups.

Definition 3.1 Let S be an LA- Γ -semigroup and
(f,E) be a fuzzy soft set in the fuzzy soft class (S,P)� .

(i) (f,E) is called a fuzzy soft
LA- (m,n) - Γ -subsemigroup of S if f(x) is a fuzzy
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LA-(m,n)-Γ-subsemigroup of S for all x ∈ E.
(ii) (f,E) is called a fuzzy soft left (right)

LA- (m,n) - Γ -ideal of S if f(x) is a fuzzy left (right)
LA- (m,n) -Γ -ideal of S for all x ∈ E . (f,E) is called a
fuzzy soft LA-(m,n)-Γ-ideal of S if f(x) is both a fuzzy
left and fuzzy right LA-(m,n)-Γ-ideal of S for all x ∈ E.

(iii) (f,E) is called a fuzzy soft generalized
LA-(m,n)-Γ-bi-ideal of S if f(x) is a fuzzy generalized
LA-(m,n)-Γ-bi-ideal of S for all x ∈ E.

(iv) (f,E) is called a fuzzy soft LA-(m,n)-Γ-bi-ideal
of S if f(x) is a fuzzy LA-(m,n)-Γ-bi-ideal of S for all
x ∈ E.

(v) (f,E) is called a fuzzy soft LA-(m,n)-Γ-interior
ideal of S if f(x) is a fuzzy LA-(m,n)-Γ-interior ideal of
S for all x ∈ E.

Example 3.2 Let μ be a fuzzy
LA- (m,n) - Γ -subsemigroup of S . Then (f,[0,1]) ,
defined by f(α) = χμα for all α ∈ [0,1] , is a fuzzy soft
LA-(m,n)-Γ-subsemigroup of S.

Lemma 3.3 Let S be an LA-Γ-semigroup. Then
(i) (f,E) is a fuzzy soft LA-(m,n)-Γ-subsemigroup if

and only if all of the nonempty level sets of f is an
LA-(m,n)-Γ-subsemigroup,

(ii) (f,E) is a fuzzy soft left (right)
LA-(m,n)-Γ-ideal if and only if all of the nonempty level
sets of f is a left (right) LA-(m,n)-Γ-ideal,

(iii) (f,E) is a fuzzy soft generalized
LA- (m,n) -Γ -bi-ideal if and only if all of the nonempty
level sets of f is a generalized LA-(m,n)-Γ-bi-ideal,

(iv) (f,E) is a fuzzy soft LA-(m,n)-Γ-bi-ideal if and
only if all of the nonempty level sets of f is an
LA-(m,n)-Γ-bi-ideal,

(v) (f,E) is a fuzzy soft LA-(m,n)-Γ-interior ideal if
and only if all of the nonempty level sets of f is an
LA-(m,n)-Γ-interior ideal.

Proof. Straightforward from Definition 3.1 and
Proposition 2.13.

Lemma 3.4 Let S be an LA-Γ-semigroup and A ⊆ E.
Then

(i) If (f,E) is a fuzzy soft LA-(m,n)-Γ-subsemigroup,
then (f,A) is a fuzzy soft LA-(m,n)-Γ-subsemigroup,

(ii) If (f,E) is a fuzzy soft left (right)
LA-(m,n) -Γ-ideal, then (f,A) is a fuzzy soft left (right)
LA-(m,n)-Γ-ideal,

(iii) If (f,E) is a fuzzy soft generalized

LA- (m,n) - Γ -bi-ideal, then (f,A) is a fuzzy soft
generalized LA-(m,n)-Γ-bi-ideal,

(iv) If (f,E) is a fuzzy soft LA- (m,n) - Γ -bi-ideal,
then (f,A) is a fuzzy soft LA-(m,n)-Γ-bi-ideal,

(v) If (f,E) is a fuzzy soft LA-(m,n)-Γ-interior ideal,
then (f,A) is a fuzzy soft LA-(m,n)-Γ-interior ideal.

Proof. Straightforward.
Theorem 3.5 Let {(fi,Ei)|i ∈ Λ} be a family of fuzzy

soft LA-(m,n)-Γ-subsemigroups of S. Then
(i) �i∈Λ

r (fi,Ei), if i∈Λ� Ei ≠ ∅,
(ii) �i∈Λ

e (fi,Ei),
(iv) ⋀i∈Λ(fi,Ei),
(v) �∈Λ (fi,Ei)� are fuzzy soft

LA-(�,�)-Γ-subsemigroups of �.
Proof. Let a,b ∈ S and u ∈ amΓbn.
(i) Let �i∈Λ

r (fi,Ei) = (f,E). Then E = i∈Λ� Ei and
f(x) = ∧i∈Λfi(x) for all x ∈ E . Since f(x)(u) =
(∧i∈Λfi(x))(u) = ∧i∈Λ(fi(x)(u)) ≥ ∧i∈Λ(fi(x)(a) ∧
fi(x)(b)) = ∧i∈Λ(fi(x)(a)) ∧ ∧i∈Λ(fi(x)(b)) =
(∧i∈Λfi(x))(a) ∧ (∧i∈Λfi(x))(b) = f(x)(a) ∧ f(x)(b) ,
therefore �i∈Λ

r (fi,Ei) is a fuzzy soft
LA-(m,n)-Γ-subsemigroup of S if i∈Λ� Ei ≠ ∅.

(ii) Let �i∈Λ
e (fi,Ei) = (f,E) . Then E = i∈Λ� Ei

and f(x) = ∧i∈Λ(x)fi(x) for all x ∈ E, where Λ(x) = {i|x ∈
Ei} . Since f(x)(u) = (∧i∈Λ(x)fi(x))(u) =
∧i∈Λ(x)(fi(x)(u)) ≥ ∧i∈Λ(x)(fi(x)(a) ∧ fi(x)(b)) =
∧i∈Λ(x)(fi(x)(a)) ∧ ∧i∈Λ(x)(fi(x)(b)) =
(∧i∈Λ(x)fi(x))(a) ∧ (∧i∈Λ(x)fi(x))(b) = f(x)(a) ∧ f(x)(b) ,
therefore �i∈Λ

e (fi,Ei) is a fuzzy soft
LA-(m,n)-Γ-subsemigroup of S.

(iii) Let ⋀i∈Λ(fi,Ei) = (f,E) . Then E = i∈Λ� Ei
and f((xi)i∈Λ) = ∧i∈Λfi(xi) for all x ∈ E . Since
f((xi)i∈Λ)(u) = (∧i∈Λfi(xi))(u) = ∧i∈Λ(fi(xi)(u)) ≥
∧i∈Λ(fi(xi)(a) ∧ fi(xi)(b)) = (∧i∈Λfi(xi))(a) ∧
(∧i∈Λfi(xi))(b) = f((xi)i∈Λ)(a) ∧ f((xi)i∈Λ)(b) , therefore
⋀i∈Λ(fi,Ei) is a fuzzy soft LA-(m,n)-Γ-subsemigroup of
S.

(iv) Let �∈Λ (fi,Ei)� = (f,E) . Then E = i∈Λ� Ei
and f((xi)i∈Λ) = ∨ J⊆Λ

Jisfinite
(∧j∈Jfj(xj)).

Since
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f((xi)i∈Λ)(u) = (∨ J⊆Λ
J is finite

(∧j∈Jfj(xj)))(u)

= ∨ J⊆Λ
J is finite

((∧j∈Jfj(xj))(u))

= ∨ J⊆Λ
J is finite

(∧j∈J(fj(xj)(u)))

≥ ∨ J⊆Λ
J is finite

(∧j∈J(fi(x)(a) ∧ fi(x)(b)))

= (∨ J⊆Λ
J is finite

(∧j∈J(fi(x)(a))))

∧ (∨ J⊆Λ
J is finite

(∧j∈J(fi(x)(b))))

= (∨ J⊆Λ
J is finite

(∧j∈J(fi(x))))(a)

∧ (∨ J⊆Λ
J is finite

(∧j∈J(fi(x))))(b)

= f((xi)i∈Λ)(a) ∧ f((xi)i∈Λ)(b)
, therefore �∈Λ (fi,Ei)� is a fuzzy soft
LA-(m,n)-Γ-subsemigroup of S.

Example 3.6 Let S be the LA- Γ -semigroup in
Example 2.3 (i). Since a ⋅ b ≠ b ⋅ a and (bΓS)Γ(bΓS) ⊆
(bΓb)ΓS = bΓS , (SΓb)Γ(SΓb) ⊆ SΓ(bΓb) = SΓb ,
then bΓS and SΓ are two different LA-Γ-subsemigroups
of S . By Lemma 2.9, χbΓS and χSΓb are fuzzy
LA- Γ -subsemigroups of S . Let (f,A),(g,A) ∈ (�S,P) be
defined by f(a) = χbΓS and g(a) = χSΓb for all a ∈ A .
Thus (f,A)∪r(g,A) is not a fuzzy soft
LA-(1,1)-Γ-subsemigroups of S although (f,A),(g,A) are
fuzzy soft LA- (1,1) - Γ -subsemigroups of S . Indeed,
(f(a)∪rg(a))(xαy) = (χbΓS∪rχSΓb)(xαy) = 0 for any
a ∈ A , where x = y = aαb for any α ∈ Γ . However
(f(a)∪rg(a))(x) ∧ (f(a)∪rg(a))(y) = 1 since
(f(a)∪rg(a))(x) = (χbΓS∪rχSΓb)(x) = 1.

Theorem 3.7 Let {(fi,Ei)|i ∈ Λ} be a family of fuzzy
soft LA-(m,n)-Γ-subsemigroups of S.

(i) Let �i∈Λ
r (fi,Ei) = (f,E) and let x ∈ E . For all

i,j ∈ Λ, if fi(x) ⊆ fj(x) or fj(x) ⊆ fi(x), then �i∈Λ
r (fi,Ei)

is fuzzy soft LA-(m,n)-Γ-subsemigroups of S.
(ii) Let �i∈Λ

e (fi,Ei) = (f,E) and let x ∈ E . For all
i,j ∈ Λ, if fi(x) ⊆ fj(x) or fj(x) ⊆ fi(x), then �i∈Λ

e (fi,Ei)
is fuzzy soft LA-(m,n)-Γ-subsemigroups of S.

(iii) Let ⋁i∈Λ(fi,Ei) = (f,E) and let (xi)i∈Λ ∈ E . For
all i,j ∈ Λ , if fi(xi) ⊆ fj(xj) or fj(xj) ⊆ fi(xi) , then
⋁i∈Λ(fi,Ei) is fuzzy soft LA-(m,n)-Γ-subsemigroups of S.

Proof. Straightforward.
Theorem 3.8 Let {(fi,Ei)|i ∈ Λ} be a family of fuzzy

soft left (right) LA-(m,n)-Γ-ideal of S. Then
(i) �i∈Λ

r (fi,Ei), if i∈Λ� Ei ≠ ∅,
(ii) �i∈Λ

e (fi,Ei),
(iii) �i∈Λ

r (fi,Ei),
(iv) �i∈Λ

e (fi,Ei),

(v) ⋀i∈Λ(fi,Ei),
(vi) ⋁i∈Λ(fi,Ei),
(vii) �∈Λ (fi,Ei)� are fuzzy soft left (right)

LA-(m,n)-Γ-ideals of S.
Proof. Let a,b ∈ S and u ∈ amΓbn.
(i) Let �i∈Λ

r (fi,Ei) = (f,E). Then E = i∈Λ� Ei and
f(x) = ∧i∈Λfi(x) for all x ∈ E . Since f(x)(u) =
(∧i∈Λfi(x))(u) = ∧i∈Λ(fi(x)(u)) ≥ ∧i∈Λ(fi(x)(b)) =
(∧i∈Λfi(x))(b) = f(x)(b), therefore �i∈Λ

r (fi,Ei) is a fuzzy
soft left LA-(m,n)-Γ-ideal of S if i∈Λ� Ei ≠ ∅.

(ii) Let �i∈Λ
e (fi,Ei) = (f,E) . Then E = i∈Λ� Ei

and f(x) = ∧i∈Λ(x)fi(x) for all x ∈ E, where Λ(x) = {i|x ∈
Ei} . Since f(x)(u) = (∧i∈Λ(x)fi(x))(u) =
∧i∈Λ(x)(fi(x)(u)) ≥ ∧i∈Λ(x)(fi(x)(b)) =
(∧i∈Λ(x)fi(x))(b) = f(x)(b) , therefore �i∈Λ

e (fi,Ei) is a
fuzzy soft left LA-(m,n)-Γ-ideal of S.

(iii) Let �i∈Λ
r (fi,Ei) = (f,E) . Then E = i∈Λ� Ei

and f(x) = ∨i∈Λfi(x) for all x ∈ E . Since f(x)(u) =
(∨i∈Λfi(x))(u) = ∨i∈Λ(fi(x)(u)) ≥ ∨i∈Λ(fi(x)(b)) =
(∨i∈Λfi(x))(b) = f(x)(b), therefore �i∈Λ

r (fi,Ei) is a fuzzy
soft left LA-(m,n)-Γ-ideal of S.

(iv) Let �i∈Λ
e (fi,Ei) = (f,E) . Then E = i∈Λ� Ei

and f(x) = ∨i∈Λ(x)fi(x) for all x ∈ E, where Λ(x) = {i|x ∈
Ei} . Since f(x)(u) = (∨i∈Λ(x)fi(x))(u) =
∨i∈Λ(x)(fi(x)(u)) ≥ ∨i∈Λ(x)(fi(x)(b)) =
(∨i∈Λ(x)fi(x))(b) = f(x)(b) , therefore �i∈Λ

e (fi,Ei) is a
fuzzy soft left LA-(m,n)-Γ-ideal of S.

(v) Let ⋀i∈Λ(fi,Ei) = (f,E) . Then E = i∈Λ� Ei
and f((xi)i∈Λ) = ∧i∈Λfi(xi) for all x ∈ E . Since
f((xi)i∈Λ)(u) = (∧i∈Λfi(xi))(u) = ∧i∈Λ(fi(xi)(u)) ≥
∧i∈Λ(fi(xi)(b)) = (∧i∈Λfi(xi))(b) = f((xi)i∈Λ)(b) ,
therefore ⋀i∈Λ(fi,Ei) is a fuzzy soft left
LA-(m,n)-Γ-ideal of S.

(vi) Let ⋁i∈Λ(fi,Ei) = (f,E) . Then E = i∈Λ� Ei
and f((xi)i∈Λ) = ∨i∈Λfi(xi) for all x ∈ E . Since
f((xi)i∈Λ)(u) = (∨i∈Λfi(xi))(u) = ∨i∈Λ(fi(xi)(u)) ≥
∨i∈Λ(fi(xi)(b)) = (∨i∈Λfi(xi))(b) = f((xi)i∈Λ)(b) ,
therefore ⋁i∈Λ(fi,Ei) is a fuzzy soft left
LA-(m,n)-Γ-ideal of S.

(vii) Let i∈Λ� (fi,Ei) = (f,E) . Then E =

i∈Λ� Ei and f((xi)i∈Λ) = ∨ J⊆Λ
Jisfinite

(∧j∈Jfj(xj)). Since
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f((xi)i∈Λ)(u) = (∨ J⊆Λ
J is finite

(∧j∈Jfj(xj)))(u)
= ∨ J⊆Λ

J is finite
((∧j∈Jfj(xj))(u))

= ∨ J⊆Λ
J is finite

(∧j∈J(fj(xj)(u)))
≥ ∨ J⊆Λ

J is finite
(∧j∈J(fi(x)(b)))

= (∨ J⊆Λ
J is finite

(∧j∈J(fi(x)(b))))
= (∨ J⊆Λ

J is finite
(∧j∈J(fi(x))))(b)

= f((xi)i∈Λ)(b)
, therefore i∈Λ� (fi,Ei) is a fuzzy soft left
LA-(m,n)-Γ-ideal of S.

Proofs are similar for fuzzy soft right
LA-(m,n)-Γ-ideals of S.

Theorem 3.9 Let {(fi,Ei)|i ∈ Λ} be a family of fuzzy
soft generalized LA-(m,n)-Γ-bi-ideal S. Then

(i) �i∈Λ
r (fi,Ei), if i∈Λ� Ei ≠ ∅,

(ii) �i∈Λ
e (fi,Ei),

(iii) ⋀i∈Λ(fi,Ei),
(iv) �∈Λ (fi,Ei)� are fuzzy soft generalized

LA-(m,n)-Γ-bi-ideals of S.
Proof. Let a,b,c ∈ S and u ∈ (amΓb)Γcn.
(i) Let �i∈Λ

r (fi,Ei) = (f,E). Then E = i∈Λ� Ei and
f(x) = ∧i∈Λfi(x) for all x ∈ E . Since f(x)(u) =
(∧i∈Λfi(x))(u) = ∧i∈Λ(fi(x)(u)) ≥ ∧i∈Λ(fi(x)(a) ∧
fi(x)(c)) = ∧i∈Λ(fi(x)(a)) ∧ ∧i∈Λ(fi(x)(c)) =
(∧i∈Λfi(x))(a) ∧ (∧i∈Λfi(x))(c) = f(x)(a) ∧ f(x)(c) ,
therefore �i∈Λ

r (fi,Ei) is a fuzzy soft generalized
LA-(m,n)-Γ-bi-ideal of S if i∈Λ� Ei ≠ ∅.

(ii) Let �i∈Λ
e (fi,Ei) = (f,E) . Then E = i∈Λ� Ei

and f(x) = ∧i∈Λ(x)fi(x) for all x ∈ E, where Λ(x) = {i|x ∈
Ei} . Since f(x)(u) = (∧i∈Λ(x)fi(x))(u) =
∧i∈Λ(x)(fi(x)(u)) ≥ ∧i∈Λ(x)(fi(x)(a) ∧ fi(x)(c)) =
∧i∈Λ(x)(fi(x)(a)) ∧ ∧i∈Λ(x)(fi(x)(c)) =
(∧i∈Λ(x)fi(x))(a) ∧ (∧i∈Λ(x)fi(x))(c) = f(x)(a) ∧ f(x)(c) ,
therefore �i∈Λ

e (fi,Ei) is a fuzzy soft generalized
LA-(m,n)-Γ-bi-ideal of S.

(iii) Let ⋀i∈Λ(fi,Ei) = (f,E) . Then E = i∈Λ� Ei
and f((xi)i∈Λ) = ∧i∈Λfi(xi) for all x ∈ E . Since
f((xi)i∈Λ)(u) = (∧i∈Λfi(xi))(u) = ∧i∈Λ(fi(xi)(u)) ≥
∧i∈Λ(fi(xi)(a) ∧ fi(xi)(c)) = (∧i∈Λfi(xi))(a) ∧
(∧i∈Λfi(xi))(c) = f((xi)i∈Λ)(a) ∧ f((xi)i∈Λ)(c) , therefore
⋀i∈Λ(fi,Ei) is a fuzzy soft generalized
LA-(m,n)-Γ-bi-ideal of S.

(iv) Let �∈Λ (fi,Ei)� = (f,E) . Then E = i∈Λ� Ei
and f((xi)i∈Λ) = ∨ J⊆Λ

Jisfinite
(∧j∈Jfj(xj)). Since

f((xi)i∈Λ)(u) = (∨ J⊆Λ
J is finite

(∧j∈Jfj(xj)))(u)
= ∨ J⊆Λ

J is finite
((∧j∈Jfj(xj))(u))

= ∨ J⊆Λ
J is finite

(∧j∈J(fj(xj)(u)))
≥ ∨ J⊆Λ

J is finite
(∧j∈J(fi(x)(a) ∧ fi(x)(c)))

= (∨ J⊆Λ
J is finite

(∧j∈J(fi(x)(a))))
∧ (∨ J⊆Λ

J is finite
(∧j∈J(fi(x)(c))))

= (∨ J⊆Λ
J is finite

(∧j∈J(fi(x))))(a)
∧ (∨ J⊆Λ

J is finite
(∧j∈J(fi(x))))(c)

= f((xi)i∈Λ)(a) ∧ f((xi)i∈Λ)(c)
, therefore �∈Λ (fi,Ei)� is a fuzzy soft generalized
LA-(m,n)-Γ-bi-ideal of S.

Theorem 3.10 Let {(fi,Ei)|i ∈ Λ} be a family of
fuzzy soft generalized LA-(m,n)-Γ-bi-ideal S. Then

(i) Let �i∈Λ
r (fi,Ei) = (f,E) and let x ∈ E . For all

i,j ∈ Λ, if fi(x) ⊆ fj(x) or fj(x) ⊆ fi(x), then �i∈Λ
r (fi,Ei)

is fuzzy soft generalized LA-(m,n)-Γ-bi-ideals of S.
(ii) Let �i∈Λ

e (fi,Ei) = (f,E) and let x ∈ E . For all
i,j ∈ Λ, if fi(x) ⊆ fj(x) or fj(x) ⊆ fi(x), then �i∈Λ

e (fi,Ei)
is fuzzy soft generalized LA-(m,n)-Γ-bi-ideals of S.

(iii) Let ⋁i∈Λ(fi,Ei) = (f,E) and let (xi)i∈Λ ∈ E . For
all i,j ∈ Λ , if fi(xi) ⊆ fj(xj) or fj(xj) ⊆ fi(xi) , then
⋁i∈Λ(fi,Ei) is fuzzy soft generalized
LA-(m,n)-Γ-bi-ideals of S.

Proof. Straightforward.
Theorem 3.11 Let {(fi,Ei)|i ∈ Λ} be a family of

fuzzy soft LA-(m,n)-Γ-bi-ideal of S. Then
(i) �i∈Λ

r (fi,Ei), if i∈Λ� Ei ≠ ∅,
(ii) �i∈Λ

e (fi,Ei),
(iii) ⋀i∈Λ(fi,Ei),
(iv) �∈Λ (fi,Ei)� are fuzzy soft

LA-(m,n)-Γ-bi-ideals of S.
Proof. Straightforward from Theorem 3.5 and

Theorem 3.9.
Theorem 3.12 Let {(fi,Ei)|i ∈ Λ} be a family of

fuzzy soft LA-(m,n)-Γ-bi-ideal of S. Then
(i) Let �i∈Λ

r (fi,Ei) = (f,E) and let x ∈ E . For all
i,j ∈ Λ, if fi(x) ⊆ fj(x) or fj(x) ⊆ fi(x), then �i∈Λ

r (fi,Ei)
is fuzzy soft LA-(m,n)-Γ-bi-ideals of S.

(ii) Let �i∈Λ
e (fi,Ei) = (f,E) and let x ∈ E . For all

i,j ∈ Λ, if fi(x) ⊆ fj(x) or fj(x) ⊆ fi(x), then �i∈Λ
e (fi,Ei)

is fuzzy soft LA-(m,n)-Γ-bi-ideals of S.
(iii) Let ⋁i∈Λ(fi,Ei) = (f,E) and let (xi)i∈Λ ∈ E . For

all i,j ∈ Λ , if fi(xi) ⊆ fj(xj) or fj(xj) ⊆ fi(xi) , then
⋁i∈Λ(fi,Ei) is fuzzy soft LA-(m,n)-Γ-bi-ideals of S.

Proof. Straightforward.
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Theorem 3.13 Let {(fi,Ei)|i ∈ Λ} be a family of
fuzzy soft LA-(m,n)-Γ-interior ideal of S. Then

(i) �i∈Λ
r (fi,Ei), if i∈Λ� Ei ≠ ∅,

(ii) �i∈Λ
e (fi,Ei),

(iii) �i∈Λ
r (fi,Ei),

(iv) �i∈Λ
e (fi,Ei),

(v) ⋀i∈Λ(fi,Ei),
(vi) ⋁i∈Λ(fi,Ei),
(vii) �∈Λ (fi,Ei)� are fuzzy soft

LA-(m,n)-Γ-interior ideals of S.
Proof. Let a,b,c ∈ S and u ∈ (amΓb)Γcn.
(i) Let �i∈Λ

r (fi,Ei) = (f,E). Then E = i∈Λ� Ei and
f(x) = ∧i∈Λfi(x) for all x ∈ E . Since f(x)(u) =
(∧i∈Λfi(x))(u) = ∧i∈Λ(fi(x)(u)) ≥ ∧i∈Λ(fi(x)(b)) =
(∧i∈Λfi(x))(b) = f(x)(b), therefore �i∈Λ

r (fi,Ei) is a fuzzy
soft LA-(m,n)-Γ-interior ideal of S if i∈Λ� Ei ≠ ∅.

(ii) Let �i∈Λ
e (fi,Ei) = (f,E) . Then E = i∈Λ� Ei

and f(x) = ∧i∈Λ(x)fi(x) for all x ∈ E, where Λ(x) = {i|x ∈
Ei} . Since f(x)(u) = (∧i∈Λ(x)fi(x))(u) =
∧i∈Λ(x)(fi(x)(u)) ≥ ∧i∈Λ(x)(fi(x)(b)) =
(∧i∈Λ(x)fi(x))(b) = f(x)(b) , therefore �i∈Λ

e (fi,Ei) is a
fuzzy soft LA-(m,n)-Γ-interior ideal of S.

(iii) Let �i∈Λ
r (fi,Ei) = (f,E) . Then E = i∈Λ� Ei

and f(x) = ∨i∈Λfi(x) for all x ∈ E . Since f(x)(u) =
(∨i∈Λfi(x))(u) = ∨i∈Λ(fi(x)(u)) ≥ ∨i∈Λ(fi(x)(b)) =
(∨i∈Λfi(x))(b) = f(x)(b), therefore �i∈Λ

r (fi,Ei) is a fuzzy
soft LA-(m,n)-Γ-interior ideal of S.

(iv) Let �i∈Λ
e (fi,Ei) = (f,E) . Then E = i∈Λ� Ei

and f(x) = ∨i∈Λ(x)fi(x) for all x ∈ E, where Λ(x) = {i|x ∈
Ei} . Since f(x)(u) = (∨i∈Λ(x)fi(x))(u) =
∨i∈Λ(x)(fi(x)(u)) ≥ ∨i∈Λ(x)(fi(x)(b)) =
(∨i∈Λ(x)fi(x))(b) = f(x)(b) , therefore �i∈Λ

e (fi,Ei) is a
fuzzy soft LA-(m,n)-Γ-interior ideal of S.

(v) Let ⋀i∈Λ(fi,Ei) = (f,E) . Then E = i∈Λ� Ei
and f((xi)i∈Λ) = ∧i∈Λfi(xi) for all x ∈ E . Since
f((xi)i∈Λ)(u) = (∧i∈Λfi(xi))(u) = ∧i∈Λ(fi(xi)(u)) ≥
∧i∈Λ(fi(xi)(b)) = (∧i∈Λfi(xi))(b) = f((xi)i∈Λ)(b) ,
therefore ⋀i∈Λ(fi,Ei) is a fuzzy soft LA-(m,n)-Γ-interior
ideal of S.

(vi) Let ⋁i∈Λ(fi,Ei) = (f,E) . Then E = i∈Λ� Ei
and f((xi)i∈Λ) = ∨i∈Λfi(xi) for all x ∈ E . Since
f((xi)i∈Λ)(u) = (∨i∈Λfi(xi))(u) = ∨i∈Λ(fi(xi)(u)) ≥
∨i∈Λ(fi(xi)(b)) = (∨i∈Λfi(xi))(b) = f((xi)i∈Λ)(b) ,
therefore ⋁i∈Λ(fi,Ei) is a fuzzy soft LA-(m,n)-Γ-interior
ideal of S.

(vii) Let �∈Λ (fi,Ei)� = (f,E) . Then E = i∈Λ� Ei

and f((xi)i∈Λ) = ∨ J⊆Λ
Jisfinite

(∧j∈Jfj(xj)). Since,

f((xi)i∈Λ)(u) = (∨ J⊆Λ
J is finite

(∧j∈Jfj(xj)))(u)

= ∨ J⊆Λ
J is finite

((∧j∈Jfj(xj))(u))

= ∨ J⊆Λ
J is finite

(∧j∈J(fj(xj)(u)))

≥ ∨ J⊆Λ
J is finite

(∧j∈J(fi(x)(b)))

= (∨ J⊆Λ
J is finite

(∧j∈J(fi(x)(b))))

= (∨ J⊆Λ
J is finite

(∧j∈J(fi(x))))(b)

= f((xi)i∈Λ)(b)
therefore �∈Λ (fi,Ei)� is a fuzzy soft
LA-(m,n)-Γ-interior ideal of S.

4. Conclusions

In this paper, we introduce the definitions of some
certain fuzzy soft concepts in an LA-(m,n)-Γ-semigroup
and investigate some algebraic properties of fuzzy soft
sets in LA- (m,n) - Γ -semigroups. To extend this work,
one could define fuzzy soft LA- (m,n) -Γ -quasi, -prime
and -semiprime ideals of an LA-(m,n)-Γ-semigroup and
examine algebraic properties of them.
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